Bases: sage.combinat.crystals.kirillov_reshetikhin.KirillovReshetikhinCrystalFromPromotion
Class of Kirillov-Reshetikhin crystals of type .
EXAMPLES:
sage: K = KirillovReshetikhinCrystal(['A',3,1], 2,2)
sage: b = K(rows=[[1,2],[2,4]])
sage: b.f(0)
[[1, 1], [2, 2]]
Specifies the classical crystal underlying the KR crystal of type A.
EXAMPLES:
sage: K = KirillovReshetikhinCrystal(['A',3,1], 2,2)
sage: K.classical_decomposition()
The crystal of tableaux of type ['A', 3] and shape(s) [[2, 2]]
Specifies the Dynkin diagram automorphism underlying the promotion action on the crystal elements. The automorphism needs to map node 0 to some other Dynkin node.
For type A we use the Dynkin diagram automorphism which maps i to i+1 mod n+1, where n is the rank.
EXAMPLES:
sage: K = KirillovReshetikhinCrystal(['A',3,1], 2,2)
sage: K.dynkin_diagram_automorphism(0)
1
sage: K.dynkin_diagram_automorphism(3)
0
Specifies the promotion operator used to construct the affine type A crystal. For type A this corresponds to the Dynkin diagram automorphism which maps i to i+1 mod n+1, where n is the rank.
EXAMPLES:
sage: K = KirillovReshetikhinCrystal([‘A’,3,1], 2,2) sage: b = K.classical_decomposition()(rows=[[1,2],[3,4]]) sage: K.promotion()(b) [[1, 3], [2, 4]]
Specifies the inverse promotion operator used to construct the affine type A crystal. For type A this corresponds to the Dynkin diagram automorphism which maps i to i-1 mod n+1, where n is the rank.
EXAMPLES:
sage: K = KirillovReshetikhinCrystal([‘A’,3,1], 2,2) sage: b = K.classical_decomposition()(rows=[[1,3],[2,4]]) sage: K.promotion_inverse()(b) [[1, 2], [3, 4]] sage: b = K.classical_decomposition()(rows=[[1,2],[3,3]]) sage: K.promotion_inverse()(K.promotion()(b)) [[1, 2], [3, 3]]
Bases: sage.combinat.crystals.kirillov_reshetikhin.KirillovReshetikhinGenericCrystal, sage.combinat.crystals.affine.AffineCrystalFromClassical
Class of Kirillov-Reshetikhin crystals of type for .
EXAMPLES:
sage: K = KirillovReshetikhinCrystal(['C',2,1], 1,2)
sage: K
Kirillov-Reshetikhin crystal of type ['C', 2, 1] with (r,s)=(1,2)
sage: b = K(rows=[])
sage: b.f(0)
[[1, 1]]
sage: b.e(0)
[[-1, -1]]
Returns the ambient crystal of type associated to the Kirillov-Reshetikhin crystal of type . This ambient crystal is used to construct the zero arrows.
EXAMPLES:
sage: K = KirillovReshetikhinCrystal(['C',3,1], 2,3)
sage: K.ambient_crystal()
Kirillov-Reshetikhin crystal of type ['B', 4, 1]^* with (r,s)=(2,3)
Gives a dictionary of all self-dual diagrams for the ambient crystal. Their key is their inner shape.
EXAMPLES:
sage: K = KirillovReshetikhinCrystal(['C',2,1], 1,2)
sage: K.ambient_dict_pm_diagrams()
{[]: [[1, 1], [0]], [2]: [[0, 0], [2]]}
sage: K = KirillovReshetikhinCrystal(['C',3,1], 2,2)
sage: K.ambient_dict_pm_diagrams()
{[2, 2]: [[0, 0], [0, 0], [2]], []: [[1, 1], [0, 0], [0]], [2]: [[0, 0], [1, 1], [0]]}
sage: K = KirillovReshetikhinCrystal(['C',3,1], 2,3)
sage: K.ambient_dict_pm_diagrams()
{[3, 3]: [[0, 0], [0, 0], [3]], [3, 1]: [[0, 0], [1, 1], [1]], [1, 1]: [[1, 1], [0, 0], [1]]}
Gives a dictionary of all -highest weight vectors in the ambient crystal. Their key is the inner shape of their corresponding diagram, or equivalently, their weight.
EXAMPLES:
sage: K = KirillovReshetikhinCrystal(['C',3,1], 2,2)
sage: K.ambient_highest_weight_dict()
{[]: [[2], [-2]], [2, 2]: [[2, 2], [3, 3]], [2]: [[1, 2], [2, -1]]}
Specifies the classical crystal underlying the Kirillov-Reshetikhin crystal of type . It is given by where are weights obtained from a rectangle of width s and height r by removing horizontal dominoes. Here we identify the fundamental weight with a column of height .
EXAMPLES:
sage: K = KirillovReshetikhinCrystal(['C',3,1], 2,2)
sage: K.classical_decomposition()
The crystal of tableaux of type ['C', 3] and shape(s) [[], [2], [2, 2]]
Provides a map from the ambient crystal of type to the Kirillov-Reshetikhin crystal of type . Note that this map is only well-defined on elements that are in the image type elements under .
EXAMPLES:
sage: K = KirillovReshetikhinCrystal(['C',3,1], 2,2)
sage: b=K.ambient_crystal()(rows=[[2,2],[3,3]])
sage: K.from_ambient_crystal()(b)
[[1, 1], [2, 2]]
Gives a dictionary of the classical highest weight vectors of self. Their key is their shape.
EXAMPLES:
sage: K = KirillovReshetikhinCrystal(['C',3,1], 2,2)
sage: K.highest_weight_dict()
{[2, 2]: [[1, 1], [2, 2]], []: [], [2]: [[1, 1]]}
Provides a map from the Kirillov-Reshetikhin crystal of type to the ambient crystal of type .
EXAMPLES:
sage: K = KirillovReshetikhinCrystal(['C',3,1], 2,2)
sage: b=K(rows=[[1,1]])
sage: K.to_ambient_crystal()(b)
[[1, 2], [2, -1]]
sage: b=K(rows=[])
sage: K.to_ambient_crystal()(b)
[[2], [-2]]
sage: K.to_ambient_crystal()(b).parent() # Anne: please check this!!!!
Kirillov-Reshetikhin crystal of type ['B', 4, 1]^* with (r,s)=(2,2)
Bases: sage.combinat.crystals.affine.AffineCrystalFromClassicalElement
Class for the elements in the Kirillov-Reshetikhin crystals of type for .
EXAMPLES:
sage: K=KirillovReshetikhinCrystal(['C',3,1],1,2)
sage: type(K.module_generators[0])
<class 'sage.combinat.crystals.kirillov_reshetikhin.KR_type_C_with_category.element_class'>
Gives on self by mapping self to the ambient crystal, calculating there and pulling the element back.
EXAMPLES:
sage: K=KirillovReshetikhinCrystal(['C',3,1],1,2)
sage: b = K(rows=[])
sage: b.e(0)
[[-1, -1]]
Calculates of self by mapping the element to the ambient crystal and calculating there.
EXAMPLES:
sage: K = KirillovReshetikhinCrystal(['C',2,1], 1,2)
sage: b=K(rows=[[1,1]])
sage: b.epsilon(0)
2
Gives on self by mapping self to the ambient crystal, calculating there and pulling the element back.
EXAMPLES:
sage: K=KirillovReshetikhinCrystal(['C',3,1],1,2)
sage: b = K(rows=[])
sage: b.f(0)
[[1, 1]]
Calculates of self by mapping the element to the ambient crystal and calculating there.
EXAMPLES:
sage: K = KirillovReshetikhinCrystal(['C',2,1], 1,2)
sage: b=K(rows=[[-1,-1]])
sage: b.phi(0)
2
Bases: sage.combinat.crystals.kirillov_reshetikhin.KirillovReshetikhinCrystalFromPromotion
Class of Kirillov-Reshetikhin crystals of type for .
EXAMPLES:
sage: K = KirillovReshetikhinCrystal(['E',6,1],2,1)
sage: K.module_generator().e(0)
[]
sage: K.module_generator().e(0).f(0)
[[[2, -1], [1]]]
sage: K = KirillovReshetikhinCrystal(['E',6,1], 1,1)
sage: b = K.module_generator()
sage: b
[[1]]
sage: b.e(0)
[[-2, 1]]
sage: b = [t for t in K if t.epsilon(1) == 1 and t.phi(3) == 1 and t.phi(2) == 0 and t.epsilon(2) == 0][0]
sage: b
[[-1, 3]]
sage: b.e(0)
[[-1, -2, 3]]
The elements of the Kirillov-Reshetikhin crystals can be constructed from a classical crystal element using rectract().
EXAMPLES:
sage: K = KirillovReshetikhinCrystal(['E',6,1],2,1)
sage: La = K.cartan_type().classical().root_system().weight_lattice().fundamental_weights()
sage: H = HighestWeightCrystal(La[2])
sage: t = H.module_generator()
sage: t
[[[2, -1], [1]]]
sage: type(K.retract(t))
<class 'sage.combinat.crystals.affine.KR_type_E6_with_category.element_class'>
sage: K.retract(t).e(0)
[]
TESTS:
sage: K = KirillovReshetikhinCrystal(['E',6,1], 2,1)
sage: La = K.weight_lattice_realization().fundamental_weights()
sage: all(b.weight() == sum( (K.affine_weight(b.lift())[i] * La[i] for i in K.index_set()), 0*La[0]) for b in K)
True
Returns the affine level zero weight corresponding to the element b of the classical crystal underlying self. For the coefficients to calculate the level, see Kac pg. 48.
EXAMPLES:
sage: K = KirillovReshetikhinCrystal(['E',6,1],2,1)
sage: [K.affine_weight(x.lift()) for x in K if all(x.epsilon(i) == 0 for i in [2,3,4,5])]
[(0, 0, 0, 0, 0, 0, 0),
(-2, 0, 1, 0, 0, 0, 0),
(-1, -1, 0, 0, 0, 1, 0),
(0, 0, 0, 0, 0, 0, 0),
(0, 0, 0, 0, 0, 1, -2),
(0, -1, 1, 0, 0, 0, -1),
(-1, 0, 0, 1, 0, 0, -1),
(-1, -1, 0, 0, 1, 0, -1),
(0, 0, 0, 0, 0, 0, 0),
(0, -2, 0, 1, 0, 0, 0)]
Acts with the Dynkin diagram automorphism on affine weights as outputted by the affine_weight method.
EXAMPLES:
sage: K = KirillovReshetikhinCrystal(['E',6,1],2,1)
sage: [[x[0], K.automorphism_on_affine_weight(x[0])] for x in K.highest_weight_dict().values()]
[[(-1, 0, 0, 1, 0, 0, -1), (-1, -1, 0, 0, 0, 1, 0)],
[(0, 0, 0, 0, 0, 1, -2), (-2, 0, 1, 0, 0, 0, 0)],
[(-2, 0, 1, 0, 0, 0, 0), (0, -2, 0, 1, 0, 0, 0)],
[(0, 0, 0, 0, 0, 0, 0), (0, 0, 0, 0, 0, 0, 0)],
[(0, 0, 0, 0, 0, 0, 0), (0, 0, 0, 0, 0, 0, 0)]]
Specifies the classical crystal underlying the KR crystal of type .
EXAMPLES:
sage: K = KirillovReshetikhinCrystal(['E',6,1], 2,2)
sage: K.classical_decomposition()
Direct sum of the crystals Family (Finite dimensional highest weight crystal of type ['E', 6] and highest weight 0, Finite dimensional highest weight crystal of type ['E', 6] and highest weight Lambda[2], Finite dimensional highest weight crystal of type ['E', 6] and highest weight 2*Lambda[2])
sage: K = KirillovReshetikhinCrystal(['E',6,1], 1,2)
sage: K.classical_decomposition()
Direct sum of the crystals Family (Finite dimensional highest weight crystal of type ['E', 6] and highest weight 2*Lambda[1],)
Specifies the Dynkin diagram automorphism underlying the promotion action on the crystal elements. The automorphism needs to map node 0 to some other Dynkin node.
Here we use the Dynkin diagram automorphism of order 3 which maps node 0 to node 1.
EXAMPLES:
sage: K = KirillovReshetikhinCrystal(['E',6,1],2,1)
sage: [K.dynkin_diagram_automorphism(i) for i in K.index_set()]
[1, 6, 3, 5, 4, 2, 0]
Returns a dictionary between highest weight elements, and a tuple of affine weights and its classical component.
EXAMPLES:
sage: K = KirillovReshetikhinCrystal(['E',6,1],2,1)
sage: K.highest_weight_dict()
{[[[3, -1, -6], [1]]]: ((-1, 0, 0, 1, 0, 0, -1), 1),
[[[5, -2, -6], [-6, 2]]]: ((0, 0, 0, 0, 0, 1, -2), 1),
[[[2, -1], [1]]]: ((-2, 0, 1, 0, 0, 0, 0), 1),
[[[6, -2], [-6, 2]]]: ((0, 0, 0, 0, 0, 0, 0), 1),
[]: ((0, 0, 0, 0, 0, 0, 0), 0)}
Returns a dictionary between a tuple of affine weights and a classical component, and highest weight elements.
EXAMPLES:
sage: K = KirillovReshetikhinCrystal(['E',6,1],2,1)
sage: K.highest_weight_dict_inv()
{((0, 0, 0, 0, 0, 0, 0), 0): [],
((-1, -1, 0, 0, 0, 1, 0), 1): [[[5, -3], [-1, 3]]],
((0, 0, 0, 0, 0, 0, 0), 1): [[[1, -3], [-1, 3]]],
((0, -2, 0, 1, 0, 0, 0), 1): [[[-1], [-1, 3]]],
((-2, 0, 1, 0, 0, 0, 0), 1): [[[2, -1], [1]]]}
Returns the highest weight elements of self.
EXAMPLES:
sage: K = KirillovReshetikhinCrystal(['E',6,1],2,1)
sage: K.hw_auxiliary()
[[], [[[2, -1], [1]]], [[[5, -3], [-1, 3]]], [[[6, -2], [-6, 2]]],
[[[5, -2, -6], [-6, 2]]], [[[-1], [-6, 2]]], [[[3, -1, -6], [1]]],
[[[4, -3, -6], [-1, 3]]], [[[1, -3], [-1, 3]]], [[[-1], [-1, 3]]]]
Specifies the promotion operator used to construct the affine type crystal.
EXAMPLES:
sage: K = KirillovReshetikhinCrystal([‘E’,6,1], 2,1) sage: promotion = K.promotion() sage: all(promotion(promotion(promotion(b))) == b for b in K.classical_decomposition()) True sage: K = KirillovReshetikhinCrystal([‘E’,6,1],1,1) sage: promotion = K.promotion() sage: all(promotion(promotion(promotion(b))) == b for b in K.classical_decomposition()) True
Returns the inverse promotion. Since promotion is of order 3, the inverse promotion is the same as promotion applied twice.
EXAMPLES:
sage: K = KirillovReshetikhinCrystal(['E',6,1], 2,1)
sage: p = K.promotion()
sage: p_inv = K.promotion_inverse()
sage: all(p_inv(p(b)) == b for b in K.classical_decomposition())
True
Gives a dictionary of the promotion map on highest weight elements to elements in self.
EXAMPLES:
sage: K = KirillovReshetikhinCrystal(['E',6,1],2,1)
sage: dic = K.promotion_on_highest_weight_vectors()
sage: dic
{[[[2, -1], [1]]]: [[[-1], [-1, 3]]],
[[[5, -2, -6], [-6, 2]]]: [[[2, -1], [1]]],
[[[3, -1, -6], [1]]]: [[[5, -3], [-1, 3]]],
[[[6, -2], [-6, 2]]]: [], []: [[[1, -3], [-1, 3]]]}
Bases: sage.combinat.crystals.kirillov_reshetikhin.KirillovReshetikhinGenericCrystal, sage.combinat.crystals.affine.AffineCrystalFromClassical
Class of Kirillov-Reshetikhin crystals of type for and type for .
EXAMPLES:
sage: K = KirillovReshetikhinCrystal(['A',4,2], 1,1)
sage: K
Kirillov-Reshetikhin crystal of type ['BC', 2, 2] with (r,s)=(1,1)
sage: b = K(rows=[])
sage: b.f(0)
[[1]]
sage: b.e(0)
[[-1]]
Returns the ambient crystal of type associated to the Kirillov-Reshetikhin. This ambient crystal is used to construct the zero arrows.
EXAMPLES:
sage: K = KirillovReshetikhinCrystal(['A',4,2], 2,2)
sage: K.ambient_crystal()
Kirillov-Reshetikhin crystal of type ['C', 2, 1] with (r,s)=(2,4)
Gives a dictionary of the classical highest weight vectors of the ambient crystal of self. Their key is their shape.
EXAMPLES:
sage: K = KirillovReshetikhinCrystal(['A',6,2], 2,2)
sage: K.ambient_highest_weight_dict()
{[4, 2]: [[1, 1, 1, 1], [2, 2]], [2, 2]: [[1, 1], [2, 2]], []: [], [4]: [[1, 1, 1, 1]], [4, 4]: [[1, 1, 1, 1], [2, 2, 2, 2]],
[2]: [[1, 1]]}
Specifies the classical crystal underlying the Kirillov-Reshetikhin crystal of type and . It is given by where are weights obtained from a rectangle of width s and height r by removing boxes. Here we identify the fundamental weight with a column of height .
EXAMPLES:
sage: K = KirillovReshetikhinCrystal(['A',4,2], 2,2)
sage: K.classical_decomposition()
The crystal of tableaux of type ['C', 2] and shape(s) [[], [1], [2], [1, 1], [2, 1], [2, 2]]
sage: K = KirillovReshetikhinCrystal(['D',4,2], 2,3)
sage: K.classical_decomposition()
The crystal of tableaux of type ['B', 3] and shape(s) [[], [1], [2], [1, 1], [3], [2, 1], [3, 1], [2, 2], [3, 2], [3, 3]]
Provides a map from the ambient crystal of type to the Kirillov-Reshetikhin crystal self. Note that this map is only well-defined on elements that are in the image under .
EXAMPLES:
sage: K = KirillovReshetikhinCrystal(['D',4,2], 1,1)
sage: b = K.ambient_crystal()(rows=[[3,-3]])
sage: K.from_ambient_crystal()(b)
[[0]]
sage: K = KirillovReshetikhinCrystal(['A',4,2], 1,1)
sage: b = K.ambient_crystal()(rows=[])
sage: K.from_ambient_crystal()(b)
[]
Gives a dictionary of the classical highest weight vectors of self. Their key is 2 times their shape.
EXAMPLES:
sage: K = KirillovReshetikhinCrystal(['A',6,2], 2,2)
sage: K.highest_weight_dict()
{[4, 2]: [[1, 1], [2]], [2, 2]: [[1], [2]], []: [], [4]: [[1, 1]], [4, 4]: [[1, 1], [2, 2]], [2]: [[1]]}
Sets the similarity factor used to map to the ambient crystal.
EXAMPLES:
sage: K = KirillovReshetikhinCrystal(['A',6,2], 2,2)
sage: K.similarity_factor()
{1: 2, 2: 2, 3: 2}
sage: K = KirillovReshetikhinCrystal(['D',5,2], 1,1)
sage: K.similarity_factor()
{1: 2, 2: 2, 3: 2, 4: 1}
Provides a map from self to the ambient crystal of type .
EXAMPLES:
sage: K = KirillovReshetikhinCrystal(['D',4,2], 1,1)
sage: [K.to_ambient_crystal()(b) for b in K]
[[], [[1, 1]], [[2, 2]], [[3, 3]], [[3, -3]], [[-3, -3]], [[-2, -2]], [[-1, -1]]]
sage: K = KirillovReshetikhinCrystal(['A',4,2], 1,1)
sage: [K.to_ambient_crystal()(b) for b in K]
[[], [[1, 1]], [[2, 2]], [[-2, -2]], [[-1, -1]]]
Bases: sage.combinat.crystals.affine.AffineCrystalFromClassicalElement
Class for the elements in the Kirillov-Reshetikhin crystals of type for and type for .
EXAMPLES:
sage: K=KirillovReshetikhinCrystal(['A',4,2],1,2)
sage: type(K.module_generators[0])
<class 'sage.combinat.crystals.kirillov_reshetikhin.KR_type_box_with_category.element_class'>
Gives on self by mapping self to the ambient crystal, calculating there and pulling the element back.
EXAMPLES:
sage: K=KirillovReshetikhinCrystal(['A',4,2],1,1)
sage: b = K(rows=[])
sage: b.e(0)
[[-1]]
Calculates of self by mapping the element to the ambient crystal and calculating there.
EXAMPLES:
sage: K = KirillovReshetikhinCrystal(['A',4,2], 1,1)
sage: b=K(rows=[[1]])
sage: b.epsilon(0)
2
Gives on self by mapping self to the ambient crystal, calculating there and pulling the element back.
EXAMPLES:
sage: K=KirillovReshetikhinCrystal(['A',4,2],1,1)
sage: b = K(rows=[])
sage: b.f(0)
[[1]]
Calculates of self by mapping the element to the ambient crystal and calculating there.
EXAMPLES:
sage: K = KirillovReshetikhinCrystal(['D',3,2], 1,1)
sage: b=K(rows=[[-1]])
sage: b.phi(0)
2
Bases: sage.combinat.crystals.kirillov_reshetikhin.KirillovReshetikhinCrystalFromPromotion
Class of Kirillov-Reshetikhin crystals of type for , for , and for .
EXAMPLES:
sage: K = KirillovReshetikhinCrystal(['D',4,1], 2,2)
sage: b = K(rows=[])
sage: b.f(0)
[[1], [2]]
sage: b.f(0).f(0)
[[1, 1], [2, 2]]
sage: b.e(0)
[[-2], [-1]]
sage: b.e(0).e(0)
[[-2, -2], [-1, -1]]
sage: K = KirillovReshetikhinCrystal(['B',3,1], 1,1)
sage: [[b,b.f(0)] for b in K]
[[[[1]], None], [[[2]], None], [[[3]], None], [[[0]], None], [[[-3]], None], [[[-2]], [[1]]], [[[-1]], [[2]]]]
sage: K = KirillovReshetikhinCrystal(['A',5,2], 1,1)
sage: [[b,b.f(0)] for b in K]
[[[[1]], None], [[[2]], None], [[[3]], None], [[[-3]], None], [[[-2]], [[1]]], [[[-1]], [[2]]]]
Specifies the classical crystal underlying the Kirillov-Reshetikhin crystal of type , , and . It is given by where are weights obtained from a rectangle of width s and height r by removing verticle dominoes. Here we identify the fundamental weight with a column of height .
EXAMPLES:
sage: K = KirillovReshetikhinCrystal(['D',4,1], 2,2)
sage: K.classical_decomposition()
The crystal of tableaux of type ['D', 4] and shape(s) [[], [1, 1], [2, 2]]
Specifies the Dynkin diagram automorphism underlying the promotion action on the crystal elements. The automorphism needs to map node 0 to some other Dynkin node.
Here we use the Dynkin diagram automorphism which interchanges nodes 0 and 1 and leaves all other nodes unchanged.
EXAMPLES:
sage: K = KirillovReshetikhinCrystal(['D',4,1],1,1)
sage: K.dynkin_diagram_automorphism(0)
1
sage: K.dynkin_diagram_automorphism(1)
0
sage: K.dynkin_diagram_automorphism(4)
4
This gives the bijection between an element b in the classical decomposition of the KR crystal that is -highest weight and diagrams.
EXAMPLES:
sage: K = KirillovReshetikhinCrystal(['D',4,1], 2,2)
sage: T = K.classical_decomposition()
sage: b = T(rows=[[2],[-2]])
sage: pm = K.from_highest_weight_vector_to_pm_diagram(b); pm
[[1, 1], [0, 0], [0]]
sage: pm.__repr__(pretty_printing=True)
+
-
sage: b = T(rows=[])
sage: pm=K.from_highest_weight_vector_to_pm_diagram(b); pm
[[0, 2], [0, 0], [0]]
sage: pm.__repr__(pretty_printing=True)
sage: hw = [ b for b in T if all(b.epsilon(i)==0 for i in [2,3,4]) ]
sage: all(K.from_pm_diagram_to_highest_weight_vector(K.from_highest_weight_vector_to_pm_diagram(b)) == b for b in hw)
True
This gives the bijection between a diagram and an element b in the classical decomposition of the KR crystal that is {2,3,..,n}-highest weight.
EXAMPLES:
sage: K = KirillovReshetikhinCrystal(['D',4,1], 2,2)
sage: pm = sage.combinat.crystals.kirillov_reshetikhin.PMDiagram([[1, 1], [0, 0], [0]])
sage: K.from_pm_diagram_to_highest_weight_vector(pm)
[[2], [-2]]
Specifies the promotion operator used to construct the affine type etc. crystal. This corresponds to the Dynkin diagram automorphism which interchanges nodes 0 and 1, and leaves all other nodes unchanged. On the level of crystals it is constructed using diagrams.
EXAMPLES:
sage: K = KirillovReshetikhinCrystal([‘D’,4,1], 2,2) sage: promotion = K.promotion() sage: b = K.classical_decomposition()(rows=[]) sage: promotion(b) [[1, 2], [-2, -1]] sage: b = K.classical_decomposition()(rows=[[1,3],[2,-1]]) sage: promotion(b) [[1, 3], [2, -1]] sage: b = K.classical_decomposition()(rows=[[1],[-3]]) sage: promotion(b) [[2, -3], [-2, -1]]
Specifies the promotion operator used to construct the affine type etc. crystal. This corresponds to the Dynkin diagram automorphism which interchanges nodes 0 and 1, and leaves all other nodes unchanged. On the level of crystals it is constructed using diagrams.
EXAMPLES:
sage: K = KirillovReshetikhinCrystal([‘D’,4,1], 2,2) sage: promotion = K.promotion() sage: b = K.classical_decomposition()(rows=[]) sage: promotion(b) [[1, 2], [-2, -1]] sage: b = K.classical_decomposition()(rows=[[1,3],[2,-1]]) sage: promotion(b) [[1, 3], [2, -1]] sage: b = K.classical_decomposition()(rows=[[1],[-3]]) sage: promotion(b) [[2, -3], [-2, -1]]
Calculates promotion on highest weight vectors.
EXAMPLES:
sage: K = KirillovReshetikhinCrystal(['D',4,1], 2,2)
sage: T = K.classical_decomposition()
sage: hw = [ b for b in T if all(b.epsilon(i)==0 for i in [2,3,4]) ]
sage: [K.promotion_on_highest_weight_vectors()(b) for b in hw]
[[[1, 2], [-2, -1]], [[2, 2], [-2, -1]], [[1, 2], [3, -1]], [[2], [-2]],
[[1, 2], [2, -2]], [[2, 2], [-1, -1]], [[2, 2], [3, -1]], [[2, 2], [3, 3]],
[], [[1], [2]], [[1, 1], [2, 2]], [[2], [-1]], [[1, 2], [2, -1]], [[2], [3]],
[[1, 2], [2, 3]]]
Returns the Kirillov-Reshetikhin crystal of the given type.
For more information about general crystals see sage.combinat.crystals.
Many Kirillov-Reshetikhin crystals are constructed from a classical crystal together with an automorphism on the level of crystals which corresponds to a Dynkin diagram automorphism mapping node 0 to some other node i. The action of and is then constructed using .
For example, for type the Kirillov-Reshetikhin crystal is obtained from the classical crystal using the promotion operator. For other types, see
M. Shimozono “Affine type A crystal structure on tensor products of rectangles, Demazure characters, and nilpotent varieties”, J. Algebraic Combin. 15 (2002), no. 2, 151-187 (arXiv:math.QA/9804039)
A. Schilling, “Combinatorial structure of Kirillov-Reshetikhin crystals of type , , “, J. Algebra 319 (2008) 2938-2962 (arXiv:0704.2046 [math.QA])
B. Jones, A. Schilling, “”Affine structures and a tableau model for crystals”, preprint arXiv:0909.2442 [math.CO]
Other Kirillov-Reshetikhin crystals are constructed using similarity methods. See Section 4 of
G. Fourier, M. Okado, A. Schilling, “Kirillov-Reshetikhin crystals for nonexceptional types”, Advances in Mathematics 222 Issue 3 (2009) 1080-1116 (arXiv:0810.5067 [math.RT])
INPUT:
- cartan_type Affine type and rank
- r Label of finite Dynkin diagram
- s Positive integer
EXAMPLES:
sage: K = KirillovReshetikhinCrystal(['A',3,1], 2, 1)
sage: K.index_set()
[0, 1, 2, 3]
sage: K.list()
[[[1], [2]], [[1], [3]], [[2], [3]], [[1], [4]], [[2], [4]], [[3], [4]]]
sage: b=K(rows=[[1],[2]])
sage: b.weight()
-Lambda[0] + Lambda[2]
sage: K = KirillovReshetikhinCrystal(['A',3,1], 2,2)
sage: K.automorphism(K.module_generators[0])
[[2, 2], [3, 3]]
sage: K.module_generators[0].e(0)
[[1, 2], [2, 4]]
sage: K.module_generators[0].f(2)
[[1, 1], [2, 3]]
sage: K.module_generators[0].f(1)
sage: K.module_generators[0].phi(0)
0
sage: K.module_generators[0].phi(1)
0
sage: K.module_generators[0].phi(2)
2
sage: K.module_generators[0].epsilon(0)
2
sage: K.module_generators[0].epsilon(1)
0
sage: K.module_generators[0].epsilon(2)
0
sage: b = K(rows=[[1,2],[2,3]])
sage: b
[[1, 2], [2, 3]]
sage: b.f(2)
[[1, 2], [3, 3]]
sage: K = KirillovReshetikhinCrystal(['D',4,1], 2, 1)
sage: K.cartan_type()
['D', 4, 1]
sage: type(K.module_generators[0])
<class 'sage.combinat.crystals.affine.KR_type_vertical_with_category.element_class'>
Bases: sage.combinat.crystals.kirillov_reshetikhin.KirillovReshetikhinGenericCrystal, sage.combinat.crystals.affine.AffineCrystalFromClassicalAndPromotion
This generic class assumes that the Kirillov-Reshetikhin crystal is constructed from a classical crystal ‘classical_decomposition’ and an automorphism ‘promotion’ and its inverse which corresponds to a Dynkin diagram automorphism ‘dynkin_diagram_automorphism’.
Each instance using this class needs to implement the methods: - classical_decomposition - promotion - promotion_inverse - dynkin_diagram_automorphism
Bases: sage.structure.parent.Parent
Generic class for Kirillov-Reshetikhin crystal of the given type.
Input is a Dynkin node , a positive integer , and a Cartan type .
INPUT:
- self – a crystal
- K – a Kirillov-Reshetikhin crystal of the same type as .
Returns the combinatorial `R`-matrix from , where the combinatorial -matrix is the affine crystal isomorphism which maps to , where is the unique element in of weight (see module_generator).
EXAMPLES:
sage: K = KirillovReshetikhinCrystal(['A',2,1],1,1)
sage: L = KirillovReshetikhinCrystal(['A',2,1],1,2)
sage: f = K.R_matrix(L)
sage: [[b,f(b)] for b in TensorProductOfCrystals(K,L)]
[[[[[1]], [[1, 1]]], [[[1, 1]], [[1]]]],
[[[[1]], [[1, 2]]], [[[1, 1]], [[2]]]],
[[[[1]], [[2, 2]]], [[[1, 2]], [[2]]]],
[[[[1]], [[1, 3]]], [[[1, 1]], [[3]]]],
[[[[1]], [[2, 3]]], [[[1, 2]], [[3]]]],
[[[[1]], [[3, 3]]], [[[1, 3]], [[3]]]],
[[[[2]], [[1, 1]]], [[[1, 2]], [[1]]]],
[[[[2]], [[1, 2]]], [[[2, 2]], [[1]]]],
[[[[2]], [[2, 2]]], [[[2, 2]], [[2]]]],
[[[[2]], [[1, 3]]], [[[2, 3]], [[1]]]],
[[[[2]], [[2, 3]]], [[[2, 2]], [[3]]]],
[[[[2]], [[3, 3]]], [[[2, 3]], [[3]]]],
[[[[3]], [[1, 1]]], [[[1, 3]], [[1]]]],
[[[[3]], [[1, 2]]], [[[1, 3]], [[2]]]],
[[[[3]], [[2, 2]]], [[[2, 3]], [[2]]]],
[[[[3]], [[1, 3]]], [[[3, 3]], [[1]]]],
[[[[3]], [[2, 3]]], [[[3, 3]], [[2]]]],
[[[[3]], [[3, 3]]], [[[3, 3]], [[3]]]]]
sage: K = KirillovReshetikhinCrystal(['D',4,1],1,1)
sage: L = KirillovReshetikhinCrystal(['D',4,1],2,1)
sage: f = K.R_matrix(L)
sage: T = TensorProductOfCrystals(K,L)
sage: b = T( K(rows=[[1]]), L(rows=[]) )
sage: f(b)
[[[2], [-2]], [[1]]]
Yields the module generator of weight of a Kirillov-Reshetikhin crystal
EXAMPLES:
sage: K = KirillovReshetikhinCrystal(['C',2,1],1,2)
sage: K.module_generator()
[[1, 1]]
sage: K = KirillovReshetikhinCrystal(['E',6,1],1,1)
sage: K.module_generator()
[[1]]
sage: K = KirillovReshetikhinCrystal(['D',4,1],2,1)
sage: K.module_generator()
[[1], [2]]
Returns r of the underlying Kirillov-Reshetikhin crystal
EXAMPLE:
sage: K = KirillovReshetikhinCrystal(['D',4,1], 2, 1)
sage: K.r()
2
Returns s of the underlying Kirillov-Reshetikhin crystal
EXAMPLE:
sage: K = KirillovReshetikhinCrystal(['D',4,1], 2, 1)
sage: K.s()
1
Bases: sage.combinat.combinat.CombinatorialObject
Class of diagrams. These diagrams are in one-to-one bijection with highest weight vectors in an highest weight crystal . See Section 4.1 of A. Schilling, “Combinatorial structure of Kirillov-Reshetikhin crystals of type , , “, J. Algebra 319 (2008) 2938-2962 (arXiv:0704.2046[math.QA]).
The input is a list of 2-tuples and a last 1-tuple. The tuple specifies the number of + and - in the i-th row of the pm diagram if is odd and the number of +- pairs above row and columns of height not containing any + or - if is even.
Setting the option ‘from_shapes = True’ one can also input a diagram in terms of its outer, intermediate and inner shape by specifying a tuple [n, s, outer, intermediate, inner] where is the width of the diagram, and ‘outer’ , ‘intermediate’, and ‘inner’ are the outer, intermediate and inner shape, respectively.
EXAMPLES:
sage: pm=sage.combinat.crystals.kirillov_reshetikhin.PMDiagram([[0,1],[1,2],[1]])
sage: pm.pm_diagram
[[0, 1], [1, 2], [1]]
sage: pm._list
[1, 1, 2, 0, 1]
sage: pm.n
2
sage: pm.width
5
sage: pm.__repr__(pretty_printing=True)
. . . .
. + - -
sage: sage.combinat.crystals.kirillov_reshetikhin.PMDiagram([2,5,[4,4],[4,2],[4,1]], from_shapes=True)
[[0, 1], [1, 2], [1]]
TESTS:
sage: pm=sage.combinat.crystals.kirillov_reshetikhin.PMDiagram([[1,2],[1,1],[1,1],[1,1],[1]])
sage: sage.combinat.crystals.kirillov_reshetikhin.PMDiagram([pm.n, pm.width, pm.outer_shape(), pm.intermediate_shape(), pm.inner_shape()], from_shapes=True) == pm
True
sage: pm=sage.combinat.crystals.kirillov_reshetikhin.PMDiagram([[1,2],[1,2],[1,1],[1,1],[1,1],[1]])
sage: sage.combinat.crystals.kirillov_reshetikhin.PMDiagram([pm.n, pm.width, pm.outer_shape(), pm.intermediate_shape(), pm.inner_shape()], from_shapes=True) == pm
True
Returns a list with the heights of all addable plus in the diagram.
EXAMPLES:
sage: pm=sage.combinat.crystals.kirillov_reshetikhin.PMDiagram([[1,2],[1,2],[1,1],[1,1],[1,1],[1]])
sage: pm.heights_of_addable_plus()
[1, 1, 2, 3, 4, 5]
sage: pm=sage.combinat.crystals.kirillov_reshetikhin.PMDiagram([[1,2],[1,1],[1,1],[1,1],[1]])
sage: pm.heights_of_addable_plus()
[1, 2, 3, 4]
Returns a list with the heights of all minus in the diagram.
EXAMPLES:
sage: pm=sage.combinat.crystals.kirillov_reshetikhin.PMDiagram([[1,2],[1,2],[1,1],[1,1],[1,1],[1]])
sage: pm.heights_of_minus()
[5, 5, 3, 3, 1, 1]
sage: pm=sage.combinat.crystals.kirillov_reshetikhin.PMDiagram([[1,2],[1,1],[1,1],[1,1],[1]])
sage: pm.heights_of_minus()
[4, 4, 2, 2]
Returns the inner shape of the pm diagram
Returns the intermediate shape of the pm diagram (innner shape plus positions of plusses)
EXAMPLES:
sage: pm=sage.combinat.crystals.kirillov_reshetikhin.PMDiagram([[0,1],[1,2],[1]])
sage: pm.intermediate_shape()
[4, 2]
sage: pm=sage.combinat.crystals.kirillov_reshetikhin.PMDiagram([[1,2],[1,1],[1,1],[1,1],[1]])
sage: pm.intermediate_shape()
[8, 6, 4, 2]
sage: pm=sage.combinat.crystals.kirillov_reshetikhin.PMDiagram([[1,2],[1,2],[1,1],[1,1],[1,1],[1]])
sage: pm.intermediate_shape()
[11, 8, 6, 4, 2]
sage: pm=sage.combinat.crystals.kirillov_reshetikhin.PMDiagram([[1,0],[0,1],[2,0],[0,0],[0]])
sage: pm.intermediate_shape()
[4, 2, 2]
Returns the outer shape of the pm diagram
EXAMPLES:
sage: pm=sage.combinat.crystals.kirillov_reshetikhin.PMDiagram([[0,1],[1,2],[1]])
sage: pm.outer_shape()
[4, 4]
sage: pm=sage.combinat.crystals.kirillov_reshetikhin.PMDiagram([[1,2],[1,1],[1,1],[1,1],[1]])
sage: pm.outer_shape()
[8, 8, 4, 4]
sage: pm=sage.combinat.crystals.kirillov_reshetikhin.PMDiagram([[1,2],[1,2],[1,1],[1,1],[1,1],[1]])
sage: pm.outer_shape()
[13, 8, 8, 4, 4]
Returns sigma on pm diagrams as needed for the analogue of the Dynkin diagram automorphism that interchanges nodes and for type , , for Kirillov-Reshetikhin crystals.
EXAMPLES:
sage: pm=sage.combinat.crystals.kirillov_reshetikhin.PMDiagram([[0,1],[1,2],[1]])
sage: pm.sigma().pm_diagram
[[1, 0], [2, 1], [1]]
Returns all partitions obtained from a rectangle of width s and height r by removing horizontal dominoes.
EXAMPLES:
sage: sage.combinat.crystals.kirillov_reshetikhin.horizontal_dominoes_removed(2,2)
[[], [2], [2, 2]]
sage: sage.combinat.crystals.kirillov_reshetikhin.horizontal_dominoes_removed(3,2)
[[], [2], [2, 2], [2, 2, 2]]
Returns all partitions in a box of width s and height r.
EXAMPLES:
sage: sage.combinat.crystals.kirillov_reshetikhin.partitions_in_box(3,2)
[[], [1], [2], [1, 1], [2, 1], [1, 1, 1], [2, 2], [2, 1, 1],
[2, 2, 1], [2, 2, 2]]
Returns all partitions obtained from a rectangle of width s and height r by removing vertical dominoes.
EXAMPLES:
sage: sage.combinat.crystals.kirillov_reshetikhin.vertical_dominoes_removed(2,2)
[[], [1, 1], [2, 2]]
sage: sage.combinat.crystals.kirillov_reshetikhin.vertical_dominoes_removed(3,2)
[[2], [2, 1, 1], [2, 2, 2]]
sage: sage.combinat.crystals.kirillov_reshetikhin.vertical_dominoes_removed(4,2)
[[], [1, 1], [1, 1, 1, 1], [2, 2], [2, 2, 1, 1], [2, 2, 2, 2]]