These are the crystals associated with the three spin representations: the spin representations of odd orthogonal groups (or rather their double covers); and the + and - spin representations of the even orthogonal groups.
We follow Kashiwara and Nakashima (Journal of Algebra 165, 1994) in representing the elements of the spin Crystal by sequences of signs +/-. Two other representations are available as attributes internal_repn and signature of the crystal element.
Return the spin crystal of the given type B.
This is a combinatorial model for the crystal with highest weight (the n-th fundamental weight). It has elements, here called Spins. See also CrystalOfLetters, CrystalOfSpinsPlus and CrystalOfSpinsMinus.
INPUT:
EXAMPLES:
sage: C = CrystalOfSpins(['B',3])
sage: C.list()
[[1, 1, 1],
[1, 1, -1],
[1, -1, 1],
[-1, 1, 1],
[1, -1, -1],
[-1, 1, -1],
[-1, -1, 1],
[-1, -1, -1]]
sage: C.cartan_type()
['B', 3]
sage: [x.signature() for x in C]
['+++', '++-', '+-+', '-++', '+--', '-+-', '--+', '---']
TESTS:
sage: TensorProductOfCrystals(C,C,generators=[[C.list()[0],C.list()[0]]]).cardinality()
35
Return the minus spin crystal of the given type D.
This is the crystal with highest weight (the (n-1)-st fundamental weight).
INPUT:
EXAMPLES:
sage: E = CrystalOfSpinsMinus(['D',4])
sage: E.list()
[[1, 1, 1, -1],
[1, 1, -1, 1],
[1, -1, 1, 1],
[-1, 1, 1, 1],
[1, -1, -1, -1],
[-1, 1, -1, -1],
[-1, -1, 1, -1],
[-1, -1, -1, 1]]
sage: [x.signature() for x in E]
['+++-', '++-+', '+-++', '-+++', '+---', '-+--', '--+-', '---+']
TESTS:
sage: len(TensorProductOfCrystals(E,E,generators=[[E[0],E[0]]]).list())
35
sage: D = CrystalOfSpinsPlus(['D',4])
sage: len(TensorProductOfCrystals(D,E,generators=[[D.list()[0],E.list()[0]]]).list())
56
Return the plus spin crystal of the given type D.
This is the crystal with highest weight (the n-th fundamental weight).
INPUT:
EXAMPLES:
sage: D = CrystalOfSpinsPlus(['D',4])
sage: D.list()
[[1, 1, 1, 1],
[1, 1, -1, -1],
[1, -1, 1, -1],
[-1, 1, 1, -1],
[1, -1, -1, 1],
[-1, 1, -1, 1],
[-1, -1, 1, 1],
[-1, -1, -1, -1]]
sage: [x.signature() for x in D]
['++++', '++--', '+-+-', '-++-', '+--+', '-+-+', '--++', '----']
TESTS:
sage: TestSuite(D).run()
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.parent.Parent
Returns the directed graph associated to self.
EXAMPLES:
sage: CrystalOfSpins(['B',3]).digraph()
Digraph on 8 vertices
Returns a list of the elements of self.
EXAMPLES:
sage: CrystalOfSpins(['B',3]).list()
[[1, 1, 1],
[1, 1, -1],
[1, -1, 1],
[-1, 1, 1],
[1, -1, -1],
[-1, 1, -1],
[-1, -1, 1],
[-1, -1, -1]]
Returns True if and only if there is a path from x to y in the crystal graph.
Because the crystal graph is classical, it is a directed acyclic graph which can be interpreted as a poset. This function implements the comparison function of this poset.
EXAMPLES:
sage: C = CrystalOfSpins(['B',3])
sage: x = C([1,1,1])
sage: y = C([-1,-1,-1])
sage: C.lt_elements(x,y)
True
sage: C.lt_elements(y,x)
False
sage: C.lt_elements(x,x)
False
Bases: sage.combinat.crystals.letters.Letter
EXAMPLES:
sage: C = CrystalOfSpins(['B',3])
sage: c = C([1,1,1])
sage: TestSuite(c).run()
sage: C([1,1,1]).parent()
The crystal of spins for type ['B', 3]
sage: c = C([1,1,1])
sage: c._repr_()
'[1, 1, 1]'
sage: D = CrystalOfSpins(['B',4])
sage: a = C([1,1,1])
sage: b = C([-1,-1,-1])
sage: c = D([1,1,1,1])
sage: a == a
True
sage: a == b
False
sage: b == c
False
Returns the signature of self.
EXAMPLES:
sage: C = CrystalOfSpins(['B',3])
sage: C([1,1,1]).signature()
'+++'
sage: C([1,1,-1]).signature()
'++-'
Bases: sage.combinat.crystals.spins.Spin
Type B spin representation crystal element
Returns the action of on self.
EXAMPLES:
sage: C = CrystalOfSpins(['B',3])
sage: [[C[m].e(i) for i in range(1,4)] for m in range(8)]
[[None, None, None],
[None, None, [1, 1, 1]],
[None, [1, 1, -1], None],
[[1, -1, 1], None, None],
[None, None, [1, -1, 1]],
[[1, -1, -1], None, [-1, 1, 1]],
[None, [-1, 1, -1], None],
[None, None, [-1, -1, 1]]]
Returns the action of on self.
EXAMPLES:
sage: C = CrystalOfSpins(['B',3])
sage: [[C[m].f(i) for i in range(1,4)] for m in range(8)]
[[None, None, [1, 1, -1]],
[None, [1, -1, 1], None],
[[-1, 1, 1], None, [1, -1, -1]],
[None, None, [-1, 1, -1]],
[[-1, 1, -1], None, None],
[None, [-1, -1, 1], None],
[None, None, [-1, -1, -1]],
[None, None, None]]
Bases: sage.combinat.crystals.spins.Spin
Type D spin representation crystal element
Returns the action of on self.
EXAMPLES:
sage: D = CrystalOfSpinsPlus(['D',4])
sage: [[D.list()[m].e(i) for i in range(1,4)] for m in range(8)]
[[None, None, None],
[None, None, None],
[None, [1, 1, -1, -1], None],
[[1, -1, 1, -1], None, None],
[None, None, [1, -1, 1, -1]],
[[1, -1, -1, 1], None, [-1, 1, 1, -1]],
[None, [-1, 1, -1, 1], None],
[None, None, None]]
sage: E = CrystalOfSpinsMinus(['D',4])
sage: [[E[m].e(i) for i in range(1,4)] for m in range(8)]
[[None, None, None],
[None, None, [1, 1, 1, -1]],
[None, [1, 1, -1, 1], None],
[[1, -1, 1, 1], None, None],
[None, None, None],
[[1, -1, -1, -1], None, None],
[None, [-1, 1, -1, -1], None],
[None, None, [-1, -1, 1, -1]]]
Returns the action of on self.
EXAMPLES:
sage: D = CrystalOfSpinsPlus(['D',4])
sage: [[D.list()[m].f(i) for i in range(1,4)] for m in range(8)]
[[None, None, None],
[None, [1, -1, 1, -1], None],
[[-1, 1, 1, -1], None, [1, -1, -1, 1]],
[None, None, [-1, 1, -1, 1]],
[[-1, 1, -1, 1], None, None],
[None, [-1, -1, 1, 1], None],
[None, None, None],
[None, None, None]]
sage: E = CrystalOfSpinsMinus(['D',4])
sage: [[E[m].f(i) for i in range(1,4)] for m in range(8)]
[[None, None, [1, 1, -1, 1]],
[None, [1, -1, 1, 1], None],
[[-1, 1, 1, 1], None, None],
[None, None, None],
[[-1, 1, -1, -1], None, None],
[None, [-1, -1, 1, -1], None],
[None, None, [-1, -1, -1, 1]],
[None, None, None]]