AUTHORS:
EXAMPLES:
More examples on Weyl Groups should be added here...
The Cayley graph of the Weyl Group of type [‘A’, 3]:
sage: w = WeylGroup(['A',3])
sage: d = w.cayley_graph(); d
Digraph on 24 vertices
sage: d.show3d(color_by_label=True, edge_size=0.01, vertex_size=0.03)
The Cayley graph of the Weyl Group of type [‘D’, 4]:
sage: w = WeylGroup(['D',4])
sage: d = w.cayley_graph(); d
Digraph on 192 vertices
sage: d.show3d(color_by_label=True, edge_size=0.01, vertex_size=0.03) #long time (less than one minute)
Bases: sage.combinat.root_system.weyl_group.WeylGroup_gens
A class for Classical Weyl Subgroup of a Weyl Group
EXAMPLES:
sage: G = WeylGroup(["A",3,1]).classical()
sage: G
Parabolic Subgroup of the Weyl Group of type ['A', 3, 1] (as a matrix group acting on the root space)
sage: G.category()
Category of finite weyl groups
sage: G.cardinality()
24
sage: TestSuite(G).run()
TESTS:
sage: from sage.combinat.root_system.weyl_group import ClassicalWeylSubgroup
sage: H = ClassicalWeylSubgroup(RootSystem(["A", 3, 1]).root_space(), prefix=None)
sage: H is G
True
Caveat: the interface is likely to change. The current main application is for plots.
EXAMPLES:
sage: WeylGroup(['A',3,1]).classical().cartan_type()
['A', 3]
sage: WeylGroup(['A',3,1]).classical().index_set()
[1, 2, 3]
Note: won’t be needed, once the lattice will be a parabolic sub root system
EXAMPLES:
sage: WeylGroup(['A',2,1]).classical().simple_reflections()
Finite family {1: [ 1 0 0]
[ 1 -1 1]
[ 0 0 1],
2: [ 1 0 0]
[ 0 1 0]
[ 1 1 -1]}
Note: won’t be needed, once the lattice will be a parabolic sub root system
Return the Weyl group associated to the parabolic subgroup.
EXAMPLES:
sage: WeylGroup(['A',4,1]).classical().weyl_group()
Weyl Group of type ['A', 4, 1] (as a matrix group acting on the root space)
sage: WeylGroup(['C',4,1]).classical().weyl_group()
Weyl Group of type ['C', 4, 1] (as a matrix group acting on the root space)
sage: WeylGroup(['E',8,1]).classical().weyl_group()
Weyl Group of type ['E', 8, 1] (as a matrix group acting on the root space)
Returns the Weyl group of type ct.
INPUT:
OPTIONAL:
EXAMPLES: The following constructions yield the same result, namely a weight lattice and its corresponding Weyl group:
sage: G = WeylGroup(['F',4])
sage: L = G.domain()
or alternatively and equivalently:
sage: L = RootSystem(['F',4]).ambient_space()
sage: G = L.weyl_group()
Either produces a weight lattice, with access to its roots and weights.
sage: G = WeylGroup(['F',4])
sage: G.order()
1152
sage: [s1,s2,s3,s4] = G.simple_reflections()
sage: w = s1*s2*s3*s4; w
[ 1/2 1/2 1/2 1/2]
[-1/2 1/2 1/2 -1/2]
[ 1/2 1/2 -1/2 -1/2]
[ 1/2 -1/2 1/2 -1/2]
sage: type(w) == G.element_class
True
sage: w.order()
12
sage: w.length() # length function on Weyl group
4
The default representation of Weyl group elements is as matrices. If you prefer, you may specify a prefix, in which case the elements are represented as products of simple reflections.
sage: W=WeylGroup("C3",prefix="s")
sage: [s1,s2,s3]=W.simple_reflections() # lets Sage parse its own output
sage: s2*s1*s2*s3
s1*s2*s3*s1
sage: s2*s1*s2*s3 == s1*s2*s3*s1
True
sage: (s2*s3)^2==(s3*s2)^2
True
sage: (s1*s2*s3*s1).matrix()
[ 0 0 -1]
[ 0 1 0]
[ 1 0 0]
sage: L = G.domain()
sage: fw = L.fundamental_weights(); fw
Finite family {1: (1, 1, 0, 0), 2: (2, 1, 1, 0), 3: (3/2, 1/2, 1/2, 1/2), 4: (1, 0, 0, 0)}
sage: rho = sum(fw); rho
(11/2, 5/2, 3/2, 1/2)
sage: w.action(rho) # action of G on weight lattice
(5, -1, 3, 2)
sage: TestSuite(WeylGroup([“A”,3])).run() sage: TestSuite(WeylGroup([“A”,3, 1])).run()
sage: W=WeylGroup([‘A’,3,1]) sage: s=W.simple_reflections() sage: w=s[0]*s[1]*s[2] sage: w.reduced_word() [0, 1, 2] sage: w=s[0]*s[2] sage: w.reduced_word() [2, 0]
Bases: sage.groups.matrix_gps.matrix_group_element.MatrixGroupElement
Class for a Weyl Group elements
Returns the action of self on the vector v.
sage: W = WeylGroup([‘A’,2]) sage: s = W.simple_reflections() sage: v = W.domain()([1,0,0]) sage: s[1].action(v) (0, 1, 0)
sage: W = WeylGroup(RootSystem([‘A’,2]).root_lattice()) sage: s = W.simple_reflections() sage: alpha = W.domain().simple_roots() sage: s[1].action(alpha[1]) -alpha[1]
sage: W=WeylGroup([‘A’,2,1]) sage: alpha = W.domain().simple_roots() sage: s = W.simple_reflections() sage: s[1].action(alpha[1]) -alpha[1] sage: s[1].action(alpha[0]) alpha[0] + alpha[1]
Returns the ambient lattice associated with self.
EXAMPLES:
sage: W = WeylGroup(['A',2])
sage: s1 = W.simple_reflection(1)
sage: s1.domain()
Ambient space of the Root system of type ['A', 2]
Tests if self has a descent at position , that is if self is on the strict negative side of the simple reflection hyperplane.
If positive is True, tests if it is on the strict positive side instead.
EXAMPLES:
sage: W = WeylGroup(['A',3])
sage: s = W.simple_reflections()
sage: [W.unit().has_descent(i) for i in W.domain().index_set()]
[False, False, False]
sage: [s[1].has_descent(i) for i in W.domain().index_set()]
[True, False, False]
sage: [s[2].has_descent(i) for i in W.domain().index_set()]
[False, True, False]
sage: [s[3].has_descent(i) for i in W.domain().index_set()]
[False, False, True]
sage: [s[3].has_descent(i, True) for i in W.domain().index_set()]
[True, True, False]
sage: W = WeylGroup(['A',3,1])
sage: s = W.simple_reflections()
sage: [W.one().has_descent(i) for i in W.domain().index_set()]
[False, False, False, False]
sage: [s[0].has_descent(i) for i in W.domain().index_set()]
[True, False, False, False]
sage: w = s[0] * s[1]
sage: [w.has_descent(i) for i in W.domain().index_set()]
[False, True, False, False]
sage: [w.has_descent(i, side = "left") for i in W.domain().index_set()]
[True, False, False, False]
sage: w = s[0] * s[2]
sage: [w.has_descent(i) for i in W.domain().index_set()]
[True, False, True, False]
sage: [w.has_descent(i, side = "left") for i in W.domain().index_set()]
[True, False, True, False]
sage: W = WeylGroup(['A',3])
sage: W.one().has_descent(0)
True
sage: W.w0.has_descent(0)
False
Returns the inverse of self.
EXAMPLES:
sage: W = WeylGroup(['A',2])
sage: w = W.unit()
sage: w = w.inverse()
sage: type(w.inverse()) == W.element_class
True
sage: W=WeylGroup(['A',2])
sage: w=W.from_reduced_word([2,1])
sage: w.inverse().reduced_word()
[1, 2]
sage: ~w == w.inverse()
True
Returns self as a matrix.
EXAMPLES:
sage: W = WeylGroup(['A',2])
sage: s1 = W.simple_reflection(1)
sage: m = s1.matrix(); m
[0 1 0]
[1 0 0]
[0 0 1]
sage: m.parent()
Full MatrixSpace of 3 by 3 dense matrices over Rational Field
Returns self’s parent.
EXAMPLES:
sage: W = WeylGroup(['A',2])
sage: s = W.simple_reflections()
sage: s[1].parent()
Weyl Group of type ['A', 2] (as a matrix group acting on the ambient space)
A first approximation of to_permutation ...
This assumes types A,B,C,D on the ambient lattice
This further assume that the basis is indexed by 0,1,... and returns a permutation of (5,4,2,3,1) (beuargl), as a tuple
Bases: sage.misc.cachefunc.ClearCacheOnPickle, sage.structure.unique_representation.UniqueRepresentation, sage.groups.matrix_gps.matrix_group.MatrixGroup_gens
The Bruhat graph Gamma(x,y), defined if x <= y in the Bruhat order, has as its vertices the Bruhat interval, {t | x <= t <= y}, and as its edges the pairs u, v such that u = r.v where r is a reflection, that is, a conjugate of a simple reflection.
Returns the Bruhat graph as a directed graph, with an edge u –> v if and only if u < v in the Bruhat order, and u = r.v.
See:
Carrell, The Bruhat graph of a Coxeter group, a conjecture of Deodhar, and rational smoothness of Schubert varieties. Algebraic groups and their generalizations: classical methods (University Park, PA, 1991), 53–61, Proc. Sympos. Pure Math., 56, Part 1, Amer. Math. Soc., Providence, RI, 1994.
EXAMPLES:
sage: W = WeylGroup(“A3”, prefix = “s”) sage: [s1,s2,s3] = W.simple_reflections() sage: W.bruhat_graph(s1*s3,s1*s2*s3*s2*s1) Digraph on 10 vertices
Returns the CartanType associated to self.
EXAMPLES:
sage: G = WeylGroup(['F',4])
sage: G.cartan_type()
['F', 4]
Returns the GAP character table as a string. For larger tables you may preface this with a command such as gap.eval(“SizeScreen([120,40])”) in order to widen the screen.
EXAMPLES:
sage: print WeylGroup(['A',3]).character_table()
CT1
<BLANKLINE>
2 3 2 2 . 3
3 1 . . 1 .
<BLANKLINE>
1a 4a 2a 3a 2b
<BLANKLINE>
X.1 1 -1 -1 1 1
X.2 3 1 -1 . -1
X.3 2 . . -1 2
X.4 3 -1 1 . -1
X.5 1 1 1 1 1
If self is a Weyl group from an affine Cartan Type, this give the classical parabolic subgroup of self.
Caveat: we assume that 0 is a special node of the Dynkin diagram
TODO: extract parabolic subgroup method
Returns the domain of the element of self, that is the root lattice realization on which they act.
EXAMPLES:
sage: G = WeylGroup(['F',4])
sage: G.domain()
Ambient space of the Root system of type ['F', 4]
sage: G = WeylGroup(['A',3,1])
sage: G.domain()
Root space over the Rational Field of the Root system of type ['A', 3, 1]
This method used to be called lattice:
sage: G.lattice() doctest:...: DeprecationWarning: (Since Sage Version 4.3.4) lattice is deprecated. Please use domain instead. Root space over the Rational Field of the Root system of type [‘A’, 3, 1]
Returns the generators of self, i.e. the simple reflections.
EXAMPLES:
sage: G = WeylGroup(['A',3])
sage: G.gens()
[[0 1 0 0]
[1 0 0 0]
[0 0 1 0]
[0 0 0 1],
[1 0 0 0]
[0 0 1 0]
[0 1 0 0]
[0 0 0 1],
[1 0 0 0]
[0 1 0 0]
[0 0 0 1]
[0 0 1 0]]
Returns the index set of self.
EXAMPLES:
sage: G = WeylGroup(['F',4])
sage: G.index_set()
[1, 2, 3, 4]
sage: G = WeylGroup(['A',3,1])
sage: G.index_set()
[0, 1, 2, 3]
Returns the domain of the element of self, that is the root lattice realization on which they act.
EXAMPLES:
sage: G = WeylGroup(['F',4])
sage: G.domain()
Ambient space of the Root system of type ['F', 4]
sage: G = WeylGroup(['A',3,1])
sage: G.domain()
Root space over the Rational Field of the Root system of type ['A', 3, 1]
This method used to be called lattice:
sage: G.lattice() doctest:...: DeprecationWarning: (Since Sage Version 4.3.4) lattice is deprecated. Please use domain instead. Root space over the Rational Field of the Root system of type [‘A’, 3, 1]
Returns a list of the elements of self.
EXAMPLES:
sage: G = WeylGroup(['A',1])
sage: G.list()
[[1 0]
[0 1], [0 1]
[1 0]]
This overrides the implementation of MatrixGroup_gap. Those seem typical timings (without the overriding):
# sage: W = WeylGroup([“C”,4])
Returns the long Weyl group element (hardcoded data)
Do we really want to keep it? There is a generic implementation which works in all cases. The hardcoded should have a better complexity (for large classical types), but there is a cache, so does this really matter?
EXAMPLES:
sage: types = [ ['A',5],['B',3],['C',3],['D',4],['G',2],['F',4],['E',6] ]
sage: [WeylGroup(t).long_element().length() for t in types]
[15, 9, 9, 12, 6, 24, 36]
sage: all( WeylGroup(t).long_element() == WeylGroup(t).long_element_hardcoded() for t in types )
True
Returns the unit element of the Weyl group
The reflections of W are the conjugates of the simple reflections. They are in bijection with the positive roots, for given a positive root, we may have the reflection in the hyperplane orthogonal to it. This method returns a dictionary indexed by the reflections taking values in the positive roots. This requires self to be a finite Weyl group.
EXAMPLES:
sage: W = WeylGroup("B2",prefix="s")
sage: refdict = W.reflections(); refdict
Finite family {s1: (1, -1), s2*s1*s2: (1, 1), s1*s2*s1: (1, 0), s2: (0, 1)}
sage: [refdict[r]+r.action(refdict[r]) for r in refdict.keys()]
[(0, 0), (0, 0), (0, 0), (0, 0)]
Returns the simple reflection.
EXAMPLES:
sage: G = WeylGroup(['F',4])
sage: G.simple_reflection(1)
[1 0 0 0]
[0 0 1 0]
[0 1 0 0]
[0 0 0 1]
sage: W=WeylGroup(['A',2,1])
sage: W.simple_reflection(1)
[ 1 0 0]
[ 1 -1 1]
[ 0 0 1]
Returns the simple reflections of self, as a family.
EXAMPLES:
There are the simple reflections for the symmetric group:
sage: W=WeylGroup(['A',2])
sage: s = W.simple_reflections(); s
Finite family {1: [0 1 0]
[1 0 0]
[0 0 1], 2: [1 0 0]
[0 0 1]
[0 1 0]}
As a special feature, for finite irreducible root systems, s[0] gives the reflection along the highest root:
sage: s[0]
[0 0 1]
[0 1 0]
[1 0 0]
We now look at some further examples:
sage: W=WeylGroup(['A',2,1])
sage: W.simple_reflections()
Finite family {0: [-1 1 1]
[ 0 1 0]
[ 0 0 1], 1: [ 1 0 0]
[ 1 -1 1]
[ 0 0 1], 2: [ 1 0 0]
[ 0 1 0]
[ 1 1 -1]}
sage: W = WeylGroup(['F',4])
sage: [s1,s2,s3,s4] = W.simple_reflections()
sage: w = s1*s2*s3*s4; w
[ 1/2 1/2 1/2 1/2]
[-1/2 1/2 1/2 -1/2]
[ 1/2 1/2 -1/2 -1/2]
[ 1/2 -1/2 1/2 -1/2]
sage: s4^2 == W.unit()
True
sage: type(w) == W.element_class
True
Returns the unit element of the Weyl group