Bases: sage.combinat.combinat.CombinatorialClass
TESTS:
sage: SetPartitionsAk(1.5).cardinality()
5
sage: SetPartitionsAk(2.5).cardinality()
52
sage: SetPartitionsAk(3.5).cardinality()
877
Bases: sage.combinat.partition_algebra.SetPartitionsAk_k
Returns the number of set partitions in B_k where k is an integer. This is given by (2k)!! = (2k-1)*(2k-3)*...*5*3*1.
EXAMPLES:
sage: SetPartitionsBk(3).cardinality()
15
sage: SetPartitionsBk(2).cardinality()
3
sage: SetPartitionsBk(1).cardinality()
1
sage: SetPartitionsBk(4).cardinality()
105
sage: SetPartitionsBk(5).cardinality()
945
Bases: sage.combinat.partition_algebra.SetPartitionsAkhalf_k
TESTS:
sage: B3p5 = SetPartitionsBk(3.5)
sage: B3p5.cardinality()
15
Bases: sage.combinat.partition_algebra.SetPartitionsAk_k
TESTS:
sage: SetPartitionsIk(2).cardinality()
13
Bases: sage.combinat.partition_algebra.SetPartitionsAkhalf_k
TESTS:
sage: SetPartitionsIk(1.5).cardinality()
4
sage: SetPartitionsIk(2.5).cardinality()
50
sage: SetPartitionsIk(3.5).cardinality()
871
Bases: sage.combinat.partition_algebra.SetPartitionsRk_k
TESTS:
sage: SetPartitionsPRk(2).cardinality()
6
sage: SetPartitionsPRk(3).cardinality()
20
sage: SetPartitionsPRk(4).cardinality()
70
sage: SetPartitionsPRk(5).cardinality()
252
Bases: sage.combinat.partition_algebra.SetPartitionsRkhalf_k
TESTS:
sage: SetPartitionsPRk(2.5).cardinality()
6
sage: SetPartitionsPRk(3.5).cardinality()
20
sage: SetPartitionsPRk(4.5).cardinality()
70
Bases: sage.combinat.partition_algebra.SetPartitionsAk_k
TESTS:
sage: SetPartitionsPk(2).cardinality()
14
sage: SetPartitionsPk(3).cardinality()
132
sage: SetPartitionsPk(4).cardinality()
1430
Bases: sage.combinat.partition_algebra.SetPartitionsAkhalf_k
TESTS:
sage: SetPartitionsPk(2.5).cardinality()
42
sage: SetPartitionsPk(1.5).cardinality()
5
Bases: sage.combinat.partition_algebra.SetPartitionsAk_k
TESTS:
sage: SetPartitionsRk(2).cardinality()
7
sage: SetPartitionsRk(3).cardinality()
34
sage: SetPartitionsRk(4).cardinality()
209
sage: SetPartitionsRk(5).cardinality()
1546
Bases: sage.combinat.partition_algebra.SetPartitionsAkhalf_k
TESTS:
sage: SetPartitionsRk(2.5).cardinality()
7
sage: SetPartitionsRk(3.5).cardinality()
34
sage: SetPartitionsRk(4.5).cardinality()
209
Bases: sage.combinat.partition_algebra.SetPartitionsAk_k
Returns k!.
TESTS:
sage: SetPartitionsSk(2).cardinality()
2
sage: SetPartitionsSk(3).cardinality()
6
sage: SetPartitionsSk(4).cardinality()
24
sage: SetPartitionsSk(5).cardinality()
120
Bases: sage.combinat.partition_algebra.SetPartitionsAkhalf_k
TESTS:
sage: SetPartitionsSk(2.5).cardinality()
2
sage: SetPartitionsSk(3.5).cardinality()
6
sage: SetPartitionsSk(4.5).cardinality()
24
sage: ks = [2.5, 3.5, 4.5, 5.5]
sage: sks = [SetPartitionsSk(k) for k in ks]
sage: all([ sk.cardinality() == len(sk.list()) for sk in sks])
True
Bases: sage.combinat.partition_algebra.SetPartitionsBk_k
TESTS:
sage: SetPartitionsTk(2).cardinality()
2
sage: SetPartitionsTk(3).cardinality()
5
sage: SetPartitionsTk(4).cardinality()
14
sage: SetPartitionsTk(5).cardinality()
42
Bases: sage.combinat.partition_algebra.SetPartitionsBkhalf_k
TESTS:
sage: SetPartitionsTk(2.5).cardinality()
2
sage: SetPartitionsTk(3.5).cardinality()
5
sage: SetPartitionsTk(4.5).cardinality()
14
EXAMPLES:
sage: from sage.combinat.partition_algebra import create_set_partition_function
sage: create_set_partition_function('A', 3)
Set partitions of {1, ..., 3, -1, ..., -3}
Returns the identity set partition 1, -1, ..., k, -k
EXAMPLES:
sage: import sage.combinat.partition_algebra as pa
sage: pa.identity(2)
{{2, -2}, {1, -1}}
Returns True if the diagram corresponding to the set partition is planar; otherwise, it returns False.
EXAMPLES:
sage: import sage.combinat.partition_algebra as pa
sage: pa.is_planar( pa.to_set_partition([[1,-2],[2,-1]]))
False
sage: pa.is_planar( pa.to_set_partition([[1,-1],[2,-2]]))
True
Returns a graph consisting of the graphs of set partitions sp1 and sp2 along with edges joining the bottom row (negative numbers) of sp1 to the top row (positive numbers) of sp2.
EXAMPLES:
sage: import sage.combinat.partition_algebra as pa
sage: sp1 = pa.to_set_partition([[1,-2],[2,-1]])
sage: sp2 = pa.to_set_partition([[1,-2],[2,-1]])
sage: g = pa.pair_to_graph( sp1, sp2 ); g
Graph on 8 vertices
sage: g.vertices() #random
[(1, 2), (-1, 1), (-2, 2), (-1, 2), (-2, 1), (2, 1), (2, 2), (1, 1)]
sage: g.edges() #random
[((1, 2), (-1, 1), None),
((1, 2), (-2, 2), None),
((-1, 1), (2, 1), None),
((-1, 2), (2, 2), None),
((-2, 1), (1, 1), None),
((-2, 1), (2, 2), None)]
Returns the propagating number of the set partition sp. The propagating number is the number of blocks with both a positive and negative number.
EXAMPLES:
sage: import sage.combinat.partition_algebra as pa
sage: sp1 = pa.to_set_partition([[1,-2],[2,-1]])
sage: sp2 = pa.to_set_partition([[1,2],[-2,-1]])
sage: pa.propagating_number(sp1)
2
sage: pa.propagating_number(sp2)
0
Returns a tuple consisting of the composition of the set partitions sp1 and sp2 and the number of components removed from the middle rows of the graph.
EXAMPLES:
sage: import sage.combinat.partition_algebra as pa
sage: sp1 = pa.to_set_partition([[1,-2],[2,-1]])
sage: sp2 = pa.to_set_partition([[1,-2],[2,-1]])
sage: pa.set_partition_composition(sp1, sp2) == (pa.identity(2), 0)
True
Returns a graph representing the set partition sp.
EXAMPLES:
sage: import sage.combinat.partition_algebra as pa
sage: g = pa.to_graph( pa.to_set_partition([[1,-2],[2,-1]])); g
Graph on 4 vertices
sage: g.vertices() #random
[1, 2, -2, -1]
sage: g.edges() #random
[(1, -2, None), (2, -1, None)]
Coverts a list of a list of numbers to a set partitions. Each list of numbers in the outer list specifies the numbers contained in one of the blocks in the set partition.
If k is specified, then the set partition will be a set partition of 1, ..., k, -1, ..., -k. Otherwise, k will default to the minimum number needed to contain all of the specified numbers.
EXAMPLES:
sage: import sage.combinat.partition_algebra as pa
sage: pa.to_set_partition([[1,-1],[2,-2]]) == pa.identity(2)
True