The final classes for extensions of Zp and Qp (ie classes that are not just designed to be inherited from).
AUTHORS:
Bases: sage.rings.padics.eisenstein_extension_generic.EisensteinExtensionGeneric, sage.rings.padics.generic_nodes.pAdicCappedRelativeFieldGeneric
TESTS:
sage: R = Qp(3, 10000, print_pos=False); S.<x> = ZZ[]; f = x^3 + 9*x - 3
sage: W.<w> = R.ext(f); W == loads(dumps(W))
True
Bases: sage.rings.padics.eisenstein_extension_generic.EisensteinExtensionGeneric, sage.rings.padics.generic_nodes.pAdicCappedAbsoluteRingGeneric
TESTS:
sage: R = ZpCA(3, 10000, print_pos=False); S.<x> = ZZ[]; f = x^3 + 9*x - 3
sage: W.<w> = R.ext(f); W == loads(dumps(W))
True
Bases: sage.rings.padics.eisenstein_extension_generic.EisensteinExtensionGeneric, sage.rings.padics.generic_nodes.pAdicCappedRelativeRingGeneric
TESTS:
sage: R = Zp(3, 10000, print_pos=False); S.<x> = ZZ[]; f = x^3 + 9*x - 3
sage: W.<w> = R.ext(f); W == loads(dumps(W))
True
Bases: sage.rings.padics.eisenstein_extension_generic.EisensteinExtensionGeneric, sage.rings.padics.generic_nodes.pAdicFixedModRingGeneric
TESTS:
sage: R = ZpFM(3, 10000, print_pos=False); S.<x> = ZZ[]; f = x^3 + 9*x - 3
sage: W.<w> = R.ext(f); W == loads(dumps(W))
True
Bases: sage.rings.padics.unramified_extension_generic.UnramifiedExtensionGeneric, sage.rings.padics.generic_nodes.pAdicCappedRelativeFieldGeneric
TESTS:
sage: R.<a> = QqCR(27,10000); R == loads(dumps(R))
True
Bases: sage.rings.padics.unramified_extension_generic.UnramifiedExtensionGeneric, sage.rings.padics.generic_nodes.pAdicCappedAbsoluteRingGeneric
TESTS:
sage: R.<a> = ZqCA(27,10000); R == loads(dumps(R))
True
Bases: sage.rings.padics.unramified_extension_generic.UnramifiedExtensionGeneric, sage.rings.padics.generic_nodes.pAdicCappedRelativeRingGeneric
TESTS:
sage: R.<a> = ZqCR(27,10000); R == loads(dumps(R))
True
Bases: sage.rings.padics.unramified_extension_generic.UnramifiedExtensionGeneric, sage.rings.padics.generic_nodes.pAdicFixedModRingGeneric
TESTS:
sage: R.<a> = ZqFM(27,10000); R == loads(dumps(R))
True