Generic graphs

This module implements the base class for graphs and digraphs.

Class and methods

class sage.graphs.generic_graph.GenericGraph

Bases: sage.graphs.generic_graph_pyx.GenericGraph_pyx

Base class for graphs and digraphs.

add_cycle(vertices)

Adds a cycle to the graph with the given vertices. If the vertices are already present, only the edges are added.

For digraphs, adds the directed cycle, whose orientation is determined by the list. Adds edges (vertices[u], vertices[u+1]) and (vertices[-1], vertices[0]).

INPUT:

  • vertices – a list of indices for the vertices of the cycle to be added.

EXAMPLES:

sage: G = Graph()
sage: G.add_vertices(range(10)); G
Graph on 10 vertices
sage: show(G)
sage: G.add_cycle(range(20)[10:20])
sage: show(G)
sage: G.add_cycle(range(10))
sage: show(G)
sage: D = DiGraph()
sage: D.add_cycle(range(4))
sage: D.edges()
[(0, 1, None), (1, 2, None), (2, 3, None), (3, 0, None)]
add_edge(u, v=None, label=None)

Adds an edge from u and v.

INPUT: The following forms are all accepted:

  • G.add_edge( 1, 2 )
  • G.add_edge( (1, 2) )
  • G.add_edges( [ (1, 2) ])
  • G.add_edge( 1, 2, ‘label’ )
  • G.add_edge( (1, 2, ‘label’) )
  • G.add_edges( [ (1, 2, ‘label’) ] )

WARNING: The following intuitive input results in nonintuitive output:

sage: G = Graph()
sage: G.add_edge((1,2), 'label')
sage: G.networkx_graph().adj           # random output order
{'label': {(1, 2): None}, (1, 2): {'label': None}}

Use one of these instead:

sage: G = Graph()
sage: G.add_edge((1,2), label="label")
sage: G.networkx_graph().adj           # random output order
{1: {2: 'label'}, 2: {1: 'label'}}
sage: G = Graph()
sage: G.add_edge(1,2,'label')
sage: G.networkx_graph().adj           # random output order
{1: {2: 'label'}, 2: {1: 'label'}}

The following syntax is supported, but note that you must use the label keyword:

sage: G = Graph()
sage: G.add_edge((1,2), label='label')
sage: G.edges()
[(1, 2, 'label')]
sage: G = Graph()
sage: G.add_edge((1,2), 'label')
sage: G.edges()
[('label', (1, 2), None)]
add_edges(edges)

Add edges from an iterable container.

EXAMPLES:

sage: G = graphs.DodecahedralGraph()
sage: H = Graph()
sage: H.add_edges( G.edge_iterator() ); H
Graph on 20 vertices
sage: G = graphs.DodecahedralGraph().to_directed()
sage: H = DiGraph()
sage: H.add_edges( G.edge_iterator() ); H
Digraph on 20 vertices
add_path(vertices)

Adds a cycle to the graph with the given vertices. If the vertices are already present, only the edges are added.

For digraphs, adds the directed path vertices[0], ..., vertices[-1].

INPUT:

  • vertices - a list of indices for the vertices of the cycle to be added.

EXAMPLES:

sage: G = Graph()
sage: G.add_vertices(range(10)); G
Graph on 10 vertices
sage: show(G)
sage: G.add_path(range(20)[10:20])
sage: show(G)
sage: G.add_path(range(10))
sage: show(G)
sage: D = DiGraph()
sage: D.add_path(range(4))
sage: D.edges()
[(0, 1, None), (1, 2, None), (2, 3, None)]
add_vertex(name=None)

Creates an isolated vertex. If the vertex already exists, then nothing is done.

INPUT:

  • name - Name of the new vertex. If no name is specified, then the vertex will be represented by the least integer not already representing a vertex. Name must be an immutable object, and cannot be None.

As it is implemented now, if a graph G has a large number of vertices with numeric labels, then G.add_vertex() could potentially be slow, if name is None.

EXAMPLES:

sage: G = Graph(); G.add_vertex(); G
Graph on 1 vertex
sage: D = DiGraph(); D.add_vertex(); D
Digraph on 1 vertex
add_vertices(vertices)

Add vertices to the (di)graph from an iterable container of vertices. Vertices that already exist in the graph will not be added again.

EXAMPLES:

sage: d = {0: [1,4,5], 1: [2,6], 2: [3,7], 3: [4,8], 4: [9], 5: [7,8], 6: [8,9], 7: [9]}
sage: G = Graph(d)
sage: G.add_vertices([10,11,12])
sage: G.vertices()
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]
sage: G.add_vertices(graphs.CycleGraph(25).vertices())
sage: G.vertices()
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24]
adjacency_matrix(sparse=None, boundary_first=False)

Returns the adjacency matrix of the (di)graph. Each vertex is represented by its position in the list returned by the vertices() function.

The matrix returned is over the integers. If a different ring is desired, use either the change_ring function or the matrix function.

INPUT:

  • sparse - whether to represent with a sparse matrix
  • boundary_first - whether to represent the boundary vertices in the upper left block

EXAMPLES:

sage: G = graphs.CubeGraph(4)
sage: G.adjacency_matrix()
[0 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0]
[1 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0]
[1 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0]
[0 1 1 0 0 0 0 1 0 0 0 1 0 0 0 0]
[1 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0]
[0 1 0 0 1 0 0 1 0 0 0 0 0 1 0 0]
[0 0 1 0 1 0 0 1 0 0 0 0 0 0 1 0]
[0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 1]
[1 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0]
[0 1 0 0 0 0 0 0 1 0 0 1 0 1 0 0]
[0 0 1 0 0 0 0 0 1 0 0 1 0 0 1 0]
[0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 1]
[0 0 0 0 1 0 0 0 1 0 0 0 0 1 1 0]
[0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 1]
[0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 1]
[0 0 0 0 0 0 0 1 0 0 0 1 0 1 1 0]
sage: matrix(GF(2),G) # matrix over GF(2)
[0 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0]
[1 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0]
[1 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0]
[0 1 1 0 0 0 0 1 0 0 0 1 0 0 0 0]
[1 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0]
[0 1 0 0 1 0 0 1 0 0 0 0 0 1 0 0]
[0 0 1 0 1 0 0 1 0 0 0 0 0 0 1 0]
[0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 1]
[1 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0]
[0 1 0 0 0 0 0 0 1 0 0 1 0 1 0 0]
[0 0 1 0 0 0 0 0 1 0 0 1 0 0 1 0]
[0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 1]
[0 0 0 0 1 0 0 0 1 0 0 0 0 1 1 0]
[0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 1]
[0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 1]
[0 0 0 0 0 0 0 1 0 0 0 1 0 1 1 0]
sage: D = DiGraph( { 0: [1,2,3], 1: [0,2], 2: [3], 3: [4], 4: [0,5], 5: [1] } )
sage: D.adjacency_matrix()
[0 1 1 1 0 0]
[1 0 1 0 0 0]
[0 0 0 1 0 0]
[0 0 0 0 1 0]
[1 0 0 0 0 1]
[0 1 0 0 0 0]

TESTS:

sage: graphs.CubeGraph(8).adjacency_matrix().parent()
Full MatrixSpace of 256 by 256 dense matrices over Integer Ring
sage: graphs.CubeGraph(9).adjacency_matrix().parent()
Full MatrixSpace of 512 by 512 sparse matrices over Integer Ring
all_paths(start, end)

Returns a list of all paths (also lists) between a pair of vertices (start, end) in the (di)graph.

EXAMPLES:

sage: eg1 = Graph({0:[1,2], 1:[4], 2:[3,4], 4:[5], 5:[6]})
sage: eg1.all_paths(0,6)
[[0, 1, 4, 5, 6], [0, 2, 4, 5, 6]]
sage: eg2 = graphs.PetersenGraph()
sage: sorted(eg2.all_paths(1,4))
[[1, 0, 4],
 [1, 0, 5, 7, 2, 3, 4],
 [1, 0, 5, 7, 2, 3, 8, 6, 9, 4],
 [1, 0, 5, 7, 9, 4],
 [1, 0, 5, 7, 9, 6, 8, 3, 4],
 [1, 0, 5, 8, 3, 2, 7, 9, 4],
 [1, 0, 5, 8, 3, 4],
 [1, 0, 5, 8, 6, 9, 4],
 [1, 0, 5, 8, 6, 9, 7, 2, 3, 4],
 [1, 2, 3, 4],
 [1, 2, 3, 8, 5, 0, 4],
 [1, 2, 3, 8, 5, 7, 9, 4],
 [1, 2, 3, 8, 6, 9, 4],
 [1, 2, 3, 8, 6, 9, 7, 5, 0, 4],
 [1, 2, 7, 5, 0, 4],
 [1, 2, 7, 5, 8, 3, 4],
 [1, 2, 7, 5, 8, 6, 9, 4],
 [1, 2, 7, 9, 4],
 [1, 2, 7, 9, 6, 8, 3, 4],
 [1, 2, 7, 9, 6, 8, 5, 0, 4],
 [1, 6, 8, 3, 2, 7, 5, 0, 4],
 [1, 6, 8, 3, 2, 7, 9, 4],
 [1, 6, 8, 3, 4],
 [1, 6, 8, 5, 0, 4],
 [1, 6, 8, 5, 7, 2, 3, 4],
 [1, 6, 8, 5, 7, 9, 4],
 [1, 6, 9, 4],
 [1, 6, 9, 7, 2, 3, 4],
 [1, 6, 9, 7, 2, 3, 8, 5, 0, 4],
 [1, 6, 9, 7, 5, 0, 4],
 [1, 6, 9, 7, 5, 8, 3, 4]]
sage: dg = DiGraph({0:[1,3], 1:[3], 2:[0,3]})
sage: sorted(dg.all_paths(0,3))
[[0, 1, 3], [0, 3]]
sage: ug = dg.to_undirected()
sage: sorted(ug.all_paths(0,3))
[[0, 1, 3], [0, 2, 3], [0, 3]]
allow_loops(new, check=True)

Changes whether loops are permitted in the (di)graph.

INPUT:

  • new - boolean.

EXAMPLES:

sage: G = Graph(loops=True); G
Looped graph on 0 vertices
sage: G.has_loops()
False
sage: G.allows_loops()
True
sage: G.add_edge((0,0))
sage: G.has_loops()
True
sage: G.loops()
[(0, 0, None)]
sage: G.allow_loops(False); G
Graph on 1 vertex
sage: G.has_loops()
False
sage: G.edges()
[]

sage: D = DiGraph(loops=True); D
Looped digraph on 0 vertices
sage: D.has_loops()
False
sage: D.allows_loops()
True
sage: D.add_edge((0,0))
sage: D.has_loops()
True
sage: D.loops()
[(0, 0, None)]
sage: D.allow_loops(False); D
Digraph on 1 vertex
sage: D.has_loops()
False
sage: D.edges()
[]
allow_multiple_edges(new, check=True)

Changes whether multiple edges are permitted in the (di)graph.

INPUT:

  • new - boolean.

EXAMPLES:

sage: G = Graph(multiedges=True,sparse=True); G
Multi-graph on 0 vertices
sage: G.has_multiple_edges()
False
sage: G.allows_multiple_edges()
True
sage: G.add_edges([(0,1)]*3)
sage: G.has_multiple_edges()
True
sage: G.multiple_edges()
[(0, 1, None), (0, 1, None), (0, 1, None)]
sage: G.allow_multiple_edges(False); G
Graph on 2 vertices
sage: G.has_multiple_edges()
False
sage: G.edges()
[(0, 1, None)]

sage: D = DiGraph(multiedges=True,sparse=True); D
Multi-digraph on 0 vertices
sage: D.has_multiple_edges()
False
sage: D.allows_multiple_edges()
True
sage: D.add_edges([(0,1)]*3)
sage: D.has_multiple_edges()
True
sage: D.multiple_edges()
[(0, 1, None), (0, 1, None), (0, 1, None)]
sage: D.allow_multiple_edges(False); D
Digraph on 2 vertices
sage: D.has_multiple_edges()
False
sage: D.edges()
[(0, 1, None)]
allows_loops()

Returns whether loops are permitted in the (di)graph.

EXAMPLES:

sage: G = Graph(loops=True); G
Looped graph on 0 vertices
sage: G.has_loops()
False
sage: G.allows_loops()
True
sage: G.add_edge((0,0))
sage: G.has_loops()
True
sage: G.loops()
[(0, 0, None)]
sage: G.allow_loops(False); G
Graph on 1 vertex
sage: G.has_loops()
False
sage: G.edges()
[]

sage: D = DiGraph(loops=True); D
Looped digraph on 0 vertices
sage: D.has_loops()
False
sage: D.allows_loops()
True
sage: D.add_edge((0,0))
sage: D.has_loops()
True
sage: D.loops()
[(0, 0, None)]
sage: D.allow_loops(False); D
Digraph on 1 vertex
sage: D.has_loops()
False
sage: D.edges()
[]
allows_multiple_edges()

Returns whether multiple edges are permitted in the (di)graph.

EXAMPLES:

sage: G = Graph(multiedges=True,sparse=True); G
Multi-graph on 0 vertices
sage: G.has_multiple_edges()
False
sage: G.allows_multiple_edges()
True
sage: G.add_edges([(0,1)]*3)
sage: G.has_multiple_edges()
True
sage: G.multiple_edges()
[(0, 1, None), (0, 1, None), (0, 1, None)]
sage: G.allow_multiple_edges(False); G
Graph on 2 vertices
sage: G.has_multiple_edges()
False
sage: G.edges()
[(0, 1, None)]

sage: D = DiGraph(multiedges=True,sparse=True); D
Multi-digraph on 0 vertices
sage: D.has_multiple_edges()
False
sage: D.allows_multiple_edges()
True
sage: D.add_edges([(0,1)]*3)
sage: D.has_multiple_edges()
True
sage: D.multiple_edges()
[(0, 1, None), (0, 1, None), (0, 1, None)]
sage: D.allow_multiple_edges(False); D
Digraph on 2 vertices
sage: D.has_multiple_edges()
False
sage: D.edges()
[(0, 1, None)]
am(sparse=None, boundary_first=False)

Returns the adjacency matrix of the (di)graph. Each vertex is represented by its position in the list returned by the vertices() function.

The matrix returned is over the integers. If a different ring is desired, use either the change_ring function or the matrix function.

INPUT:

  • sparse - whether to represent with a sparse matrix
  • boundary_first - whether to represent the boundary vertices in the upper left block

EXAMPLES:

sage: G = graphs.CubeGraph(4)
sage: G.adjacency_matrix()
[0 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0]
[1 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0]
[1 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0]
[0 1 1 0 0 0 0 1 0 0 0 1 0 0 0 0]
[1 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0]
[0 1 0 0 1 0 0 1 0 0 0 0 0 1 0 0]
[0 0 1 0 1 0 0 1 0 0 0 0 0 0 1 0]
[0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 1]
[1 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0]
[0 1 0 0 0 0 0 0 1 0 0 1 0 1 0 0]
[0 0 1 0 0 0 0 0 1 0 0 1 0 0 1 0]
[0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 1]
[0 0 0 0 1 0 0 0 1 0 0 0 0 1 1 0]
[0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 1]
[0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 1]
[0 0 0 0 0 0 0 1 0 0 0 1 0 1 1 0]
sage: matrix(GF(2),G) # matrix over GF(2)
[0 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0]
[1 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0]
[1 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0]
[0 1 1 0 0 0 0 1 0 0 0 1 0 0 0 0]
[1 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0]
[0 1 0 0 1 0 0 1 0 0 0 0 0 1 0 0]
[0 0 1 0 1 0 0 1 0 0 0 0 0 0 1 0]
[0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 1]
[1 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0]
[0 1 0 0 0 0 0 0 1 0 0 1 0 1 0 0]
[0 0 1 0 0 0 0 0 1 0 0 1 0 0 1 0]
[0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 1]
[0 0 0 0 1 0 0 0 1 0 0 0 0 1 1 0]
[0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 1]
[0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 1]
[0 0 0 0 0 0 0 1 0 0 0 1 0 1 1 0]
sage: D = DiGraph( { 0: [1,2,3], 1: [0,2], 2: [3], 3: [4], 4: [0,5], 5: [1] } )
sage: D.adjacency_matrix()
[0 1 1 1 0 0]
[1 0 1 0 0 0]
[0 0 0 1 0 0]
[0 0 0 0 1 0]
[1 0 0 0 0 1]
[0 1 0 0 0 0]

TESTS:

sage: graphs.CubeGraph(8).adjacency_matrix().parent()
Full MatrixSpace of 256 by 256 dense matrices over Integer Ring
sage: graphs.CubeGraph(9).adjacency_matrix().parent()
Full MatrixSpace of 512 by 512 sparse matrices over Integer Ring
antisymmetric()

Returns True if the relation given by the graph is antisymmetric and False otherwise.

A graph represents an antisymmetric relation if there being a path from a vertex x to a vertex y implies that there is not a path from y to x unless x=y.

A directed acyclic graph is antisymmetric. An undirected graph is never antisymmetric unless it is just a union of isolated vertices.

sage: graphs.RandomGNP(20,0.5).antisymmetric()
False
sage: digraphs.RandomDirectedGNR(20,0.5).antisymmetric()
True
automorphism_group(partition=None, translation=False, verbosity=0, edge_labels=False, order=False, return_group=True, orbits=False)

Returns the largest subgroup of the automorphism group of the (di)graph whose orbit partition is finer than the partition given. If no partition is given, the unit partition is used and the entire automorphism group is given.

INPUT:

  • translation - if True, then output includes a dictionary translating from keys == vertices to entries == elements of 1,2,...,n (since permutation groups can currently only act on positive integers).
  • partition - default is the unit partition, otherwise computes the subgroup of the full automorphism group respecting the partition.
  • edge_labels - default False, otherwise allows only permutations respecting edge labels.
  • order - (default False) if True, compute the order of the automorphism group
  • return_group - default True
  • orbits - returns the orbits of the group acting on the vertices of the graph

OUTPUT: The order of the output is group, translation, order, orbits. However, there are options to turn each of these on or off.

EXAMPLES: Graphs:

sage: graphs_query = GraphQuery(display_cols=['graph6'],num_vertices=4)
sage: L = graphs_query.get_graphs_list()
sage: graphs_list.show_graphs(L)
sage: for g in L:
...    G = g.automorphism_group()
...    G.order(), G.gens()
(24, [(2,3), (1,2), (1,4)])
(4, [(2,3), (1,4)])
(2, [(1,2)])
(8, [(1,2), (1,4)(2,3)])
(6, [(1,2), (1,4)])
(6, [(2,3), (1,2)])
(2, [(1,4)(2,3)])
(2, [(1,2)])
(8, [(2,3), (1,3)(2,4), (1,4)])
(4, [(2,3), (1,4)])
(24, [(2,3), (1,2), (1,4)])
sage: C = graphs.CubeGraph(4)
sage: G = C.automorphism_group()
sage: M = G.character_table() # random order of rows, thus abs() below
sage: QQ(M.determinant()).abs()
712483534798848
sage: G.order()
384
sage: D = graphs.DodecahedralGraph()
sage: G = D.automorphism_group()
sage: A5 = AlternatingGroup(5)
sage: Z2 = CyclicPermutationGroup(2)
sage: H = A5.direct_product(Z2)[0] #see documentation for direct_product to explain the [0]
sage: G.is_isomorphic(H)
True

Multigraphs:

sage: G = Graph(multiedges=True,sparse=True)
sage: G.add_edge(('a', 'b'))
sage: G.add_edge(('a', 'b'))
sage: G.add_edge(('a', 'b'))
sage: G.automorphism_group()
Permutation Group with generators [(1,2)]

Digraphs:

sage: D = DiGraph( { 0:[1], 1:[2], 2:[3], 3:[4], 4:[0] } )
sage: D.automorphism_group()
Permutation Group with generators [(1,2,3,4,5)]

Edge labeled graphs:

sage: G = Graph(sparse=True)
sage: G.add_edges( [(0,1,'a'),(1,2,'b'),(2,3,'c'),(3,4,'b'),(4,0,'a')] )
sage: G.automorphism_group(edge_labels=True)
Permutation Group with generators [(1,4)(2,3)]
sage: G = Graph({0 : {1 : 7}})
sage: G.automorphism_group(translation=True, edge_labels=True)
(Permutation Group with generators [(1,2)], {0: 2, 1: 1})

sage: foo = Graph(sparse=True)
sage: bar = Graph(implementation='c_graph',sparse=True)
sage: foo.add_edges([(0,1,1),(1,2,2), (2,3,3)])
sage: bar.add_edges([(0,1,1),(1,2,2), (2,3,3)])
sage: foo.automorphism_group(translation=True, edge_labels=True)
(Permutation Group with generators [()], {0: 4, 1: 1, 2: 2, 3: 3})
sage: foo.automorphism_group(translation=True)
(Permutation Group with generators [(1,2)(3,4)], {0: 4, 1: 1, 2: 2, 3: 3})
sage: bar.automorphism_group(translation=True, edge_labels=True)
(Permutation Group with generators [()], {0: 4, 1: 1, 2: 2, 3: 3})
sage: bar.automorphism_group(translation=True)
(Permutation Group with generators [(1,2)(3,4)], {0: 4, 1: 1, 2: 2, 3: 3})

You can also ask for just the order of the group:

sage: G = graphs.PetersenGraph()
sage: G.automorphism_group(return_group=False, order=True)
120

Or, just the orbits (note that each graph here is vertex transitive)

sage: G = graphs.PetersenGraph()
sage: G.automorphism_group(return_group=False, orbits=True)
[[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]]
sage: G.automorphism_group(partition=[[0],range(1,10)], return_group=False, orbits=True)
[[0], [2, 3, 6, 7, 8, 9], [1, 4, 5]]
sage: C = graphs.CubeGraph(3)
sage: C.automorphism_group(orbits=True, return_group=False)
[['000', '001', '010', '011', '100', '101', '110', '111']]
average_degree()

Returns the average degree of the graph.

The average degree of a graph G=(V,E) is equal to \frac {2|E|}{|V|}.

EXAMPLES:

The average degree of a regular graph is equal to the degree of any vertex:

sage: g = graphs.CompleteGraph(5)
sage: g.average_degree() == 4
True

The average degree of a tree is always strictly less than 2:

sage: g = graphs.RandomGNP(20,.5)
sage: tree = Graph()
sage: tree.add_edges(g.min_spanning_tree())
sage: tree.average_degree() < 2
True

For any graph, it is equal to \frac {2|E|}{|V|}:

sage: g = graphs.RandomGNP(50,.8)
sage: g.average_degree() == 2*g.size()/g.order()
True
average_distance()

Returns the average distance between vertices of the graph.

Formally, for a graph G this value is equal to \frac 1 {n(n-1)} \sum_{u,v\in G} d(u,v) where d(u,v) denotes the distance between vertices u and v and n is the number of vertices in G.

EXAMPLE:

From [GYLL93]:

sage: g=graphs.PathGraph(10)
sage: w=lambda x: (x*(x*x -1)/6)/(x*(x-1)/2)
sage: g.average_distance()==w(10)
True

REFERENCE:

[GYLL93]I. Gutman, Y.-N. Yeh, S.-L. Lee, and Y.-L. Luo. Some recent results in the theory of the Wiener number. Indian Journal of Chemistry, 32A:651–661, 1993.
blocks_and_cut_vertices()

Computes the blocks and cut vertices of the graph. In the case of a digraph, this computation is done on the underlying graph.

A cut vertex is one whose deletion increases the number of connected components. A block is a maximal induced subgraph which itself has no cut vertices. Two distinct blocks cannot overlap in more than a single cut vertex.

OUTPUT: ( B, C ), where B is a list of blocks- each is a list of vertices and the blocks are the corresponding induced subgraphs-and C is a list of cut vertices.

EXAMPLES:

sage: graphs.PetersenGraph().blocks_and_cut_vertices()
([[6, 4, 9, 7, 5, 8, 3, 2, 1, 0]], [])
sage: graphs.PathGraph(6).blocks_and_cut_vertices()
([[5, 4], [4, 3], [3, 2], [2, 1], [1, 0]], [4, 3, 2, 1])
sage: graphs.CycleGraph(7).blocks_and_cut_vertices()
([[6, 5, 4, 3, 2, 1, 0]], [])
sage: graphs.KrackhardtKiteGraph().blocks_and_cut_vertices()
([[9, 8], [8, 7], [7, 4, 6, 5, 2, 3, 1, 0]], [8, 7])
sage: G=Graph()  # make a bowtie graph where 0 is a cut vertex
sage: G.add_vertices(range(5))
sage: G.add_edges([(0,1),(0,2),(0,3),(0,4),(1,2),(3,4)])
sage: G.blocks_and_cut_vertices()
([[2, 1, 0], [4, 3, 0]], [0])
sage: graphs.StarGraph(3).blocks_and_cut_vertices()
([[1, 0], [2, 0], [3, 0]], [0])

TESTS:

sage: Graph(0).blocks_and_cut_vertices()
([], [])
sage: Graph(1).blocks_and_cut_vertices()
([0], [])
sage: Graph(2).blocks_and_cut_vertices()
...
NotImplementedError: ...

ALGORITHM: 8.3.8 in [Jungnickel05]. Notice that the termination condition on line (23) of the algorithm uses p[v] == 0 which in the book means that the parent is undefined; in this case, v must be the root s. Since our vertex names start with 0, we substitute instead the condition v == s. This is the terminating condition used in the general Depth First Search tree in Algorithm 8.2.1.

REFERENCE:

[Jungnickel05]D. Jungnickel, Graphs, Networks and Algorithms, Springer, 2005.

Returns an iterator over the vertices in a breadth-first ordering.

INPUT:

  • start - vertex or list of vertices from which to start the traversal
  • ignore_direction - (default False) only applies to directed graphs. If True, searches across edges in either direction.
  • distance - the maximum distance from the start nodes to traverse. The start nodes are distance zero from themselves.
  • neighbors - a function giving the neighbors of a vertex. The function should take a vertex and return a list of vertices. For a graph, neighbors is by default the neighbors() function of the graph. For a digraph, the neighbors function defaults to the successors() function of the graph.

See also

EXAMPLES:

sage: G = Graph( { 0: [1], 1: [2], 2: [3], 3: [4], 4: [0]} )
sage: list(G.breadth_first_search(0))
[0, 1, 4, 2, 3]

By default, the edge direction of a digraph is respected, but this can be overridden by the ignore_direction parameter:

sage: D = DiGraph( { 0: [1,2,3], 1: [4,5], 2: [5], 3: [6], 5: [7], 6: [7], 7: [0]})
sage: list(D.breadth_first_search(0))
[0, 1, 2, 3, 4, 5, 6, 7]
sage: list(D.breadth_first_search(0, ignore_direction=True))
[0, 1, 2, 3, 7, 4, 5, 6]

You can specify a maximum distance in which to search. A distance of zero returns the start vertices:

sage: D = DiGraph( { 0: [1,2,3], 1: [4,5], 2: [5], 3: [6], 5: [7], 6: [7], 7: [0]})
sage: list(D.breadth_first_search(0,distance=0))
[0]
sage: list(D.breadth_first_search(0,distance=1))
[0, 1, 2, 3]

Multiple starting vertices can be specified in a list:

sage: D = DiGraph( { 0: [1,2,3], 1: [4,5], 2: [5], 3: [6], 5: [7], 6: [7], 7: [0]})
sage: list(D.breadth_first_search([0]))                                    
[0, 1, 2, 3, 4, 5, 6, 7]
sage: list(D.breadth_first_search([0,6]))
[0, 6, 1, 2, 3, 7, 4, 5]
sage: list(D.breadth_first_search([0,6],distance=0))
[0, 6]
sage: list(D.breadth_first_search([0,6],distance=1))
[0, 6, 1, 2, 3, 7]
sage: list(D.breadth_first_search(6,ignore_direction=True,distance=2))
[6, 3, 7, 0, 5]

More generally, you can specify a neighbors function. For example, you can traverse the graph backwards by setting neighbors to be the predecessor() function of the graph:

sage: D = DiGraph( { 0: [1,2,3], 1: [4,5], 2: [5], 3: [6], 5: [7], 6: [7], 7: [0]})
sage: list(D.breadth_first_search(5,neighbors=D.neighbors_in, distance=2))
[5, 1, 2, 0]
sage: list(D.breadth_first_search(5,neighbors=D.neighbors_out, distance=2))  
[5, 7, 0]
sage: list(D.breadth_first_search(5,neighbors=D.neighbors, distance=2)) 
[5, 1, 2, 7, 0, 4, 6]

TESTS:

sage: D = DiGraph({1:[0], 2:[0]})
sage: list(D.breadth_first_search(0))
[0]
sage: list(D.breadth_first_search(0, ignore_direction=True))
[0, 1, 2]
canonical_label(partition=None, certify=False, verbosity=0, edge_labels=False)
Returns the unique graph on {0,1,...,n-1} ( n = self.order() ) which
  • is isomorphic to self,
  • has canonical vertex labels,
  • allows only permutations of vertices respecting the input set partition (if given).

Canonical here means that all graphs isomorphic to self (and respecting the input set partition) have the same canonical vertex labels.

INPUT:

  • partition - if given, the canonical label with respect to this set partition will be computed. The default is the unit set partition.
  • certify - if True, a dictionary mapping from the (di)graph to its canonical label will be given.
  • verbosity - gets passed to nice: prints helpful output.
  • edge_labels - default False, otherwise allows only permutations respecting edge labels.

EXAMPLES:

sage: D = graphs.DodecahedralGraph()
sage: E = D.canonical_label(); E
Dodecahedron: Graph on 20 vertices
sage: D.canonical_label(certify=True)
(Dodecahedron: Graph on 20 vertices, {0: 0, 1: 19, 2: 16, 3: 15, 4: 9, 5: 1, 6: 10, 7: 8, 8: 14, 9: 12, 10: 17, 11: 11, 12: 5, 13: 6, 14: 2, 15: 4, 16: 3, 17: 7, 18: 13, 19: 18})
sage: D.is_isomorphic(E)
True

Multigraphs:

sage: G = Graph(multiedges=True,sparse=True)
sage: G.add_edge((0,1))
sage: G.add_edge((0,1))
sage: G.add_edge((0,1))
sage: G.canonical_label()
Multi-graph on 2 vertices
sage: Graph('A?', implementation='c_graph').canonical_label()
Graph on 2 vertices

Digraphs:

sage: P = graphs.PetersenGraph()
sage: DP = P.to_directed()
sage: DP.canonical_label().adjacency_matrix()
[0 0 0 0 0 0 0 1 1 1]
[0 0 0 0 1 0 1 0 0 1]
[0 0 0 1 0 0 1 0 1 0]
[0 0 1 0 0 1 0 0 0 1]
[0 1 0 0 0 1 0 0 1 0]
[0 0 0 1 1 0 0 1 0 0]
[0 1 1 0 0 0 0 1 0 0]
[1 0 0 0 0 1 1 0 0 0]
[1 0 1 0 1 0 0 0 0 0]
[1 1 0 1 0 0 0 0 0 0]

Edge labeled graphs:

sage: G = Graph(sparse=True)
sage: G.add_edges( [(0,1,'a'),(1,2,'b'),(2,3,'c'),(3,4,'b'),(4,0,'a')] )
sage: G.canonical_label(edge_labels=True)
Graph on 5 vertices
sage: G.canonical_label(edge_labels=True,certify=True)
(Graph on 5 vertices, {0: 4, 1: 3, 2: 0, 3: 1, 4: 2})
cartesian_product(other)

Returns the Cartesian product of self and other.

The Cartesian product of G and H is the graph L with vertex set V(L) equal to the Cartesian product of the vertices V(G) and V(H), and ((u,v), (w,x)) is an edge iff either - (u, w) is an edge of self and v = x, or - (v, x) is an edge of other and u = w.

EXAMPLES:

sage: Z = graphs.CompleteGraph(2)
sage: C = graphs.CycleGraph(5)
sage: P = C.cartesian_product(Z); P
Graph on 10 vertices
sage: P.plot() # long time
sage: D = graphs.DodecahedralGraph()
sage: P = graphs.PetersenGraph()
sage: C = D.cartesian_product(P); C    
Graph on 200 vertices
sage: C.plot() # long time
categorical_product(other)

Returns the tensor product, also called the categorical product, of self and other.

The tensor product of G and H is the graph L with vertex set V(L) equal to the Cartesian product of the vertices V(G) and V(H), and ((u,v), (w,x)) is an edge iff - (u, w) is an edge of self, and - (v, x) is an edge of other.

EXAMPLES:

sage: Z = graphs.CompleteGraph(2)
sage: C = graphs.CycleGraph(5)
sage: T = C.tensor_product(Z); T
Graph on 10 vertices
sage: T.plot() # long time
sage: D = graphs.DodecahedralGraph()
sage: P = graphs.PetersenGraph()
sage: T = D.tensor_product(P); T
Graph on 200 vertices
sage: T.plot() # long time
center()

Returns the set of vertices in the center, i.e. whose eccentricity is equal to the radius of the (di)graph.

In other words, the center is the set of vertices achieving the minimum eccentricity.

EXAMPLES:

sage: G = graphs.DiamondGraph()
sage: G.center()
[1, 2]
sage: P = graphs.PetersenGraph()
sage: P.subgraph(P.center()) == P
True
sage: S = graphs.StarGraph(19)
sage: S.center()
[0]
sage: G = Graph()
sage: G.center()
[]
sage: G.add_vertex()
sage: G.center()
[0]
characteristic_polynomial(var='x', laplacian=False)

Returns the characteristic polynomial of the adjacency matrix of the (di)graph.

INPUT:

  • laplacian - if True, use the Laplacian matrix (see kirchhoff_matrix())

EXAMPLES:

sage: P = graphs.PetersenGraph()
sage: P.characteristic_polynomial()
x^10 - 15*x^8 + 75*x^6 - 24*x^5 - 165*x^4 + 120*x^3 + 120*x^2 - 160*x + 48
sage: P.characteristic_polynomial(laplacian=True)
x^10 - 30*x^9 + 390*x^8 - 2880*x^7 + 13305*x^6 - 39882*x^5 + 77640*x^4 - 94800*x^3 + 66000*x^2 - 20000*x
check_embedding_validity(embedding=None)

Checks whether an _embedding attribute is defined on self and if so, checks for accuracy. Returns True if everything is okay, False otherwise.

If embedding=None will test the attribute _embedding.

EXAMPLES:

sage: d = {0: [1, 5, 4], 1: [0, 2, 6], 2: [1, 3, 7], 3: [8, 2, 4], 4: [0, 9, 3], 5: [0, 8, 7], 6: [8, 1, 9], 7: [9, 2, 5], 8: [3, 5, 6], 9: [4, 6, 7]}
sage: G = graphs.PetersenGraph()
sage: G.check_embedding_validity(d)
True
check_pos_validity(pos=None, dim=2)

Checks whether pos specifies two (resp. 3) coordinates for every vertex (and no more vertices).

INPUT:

  • pos - a position dictionary for a set of vertices
  • dim - 2 or 3 (default: 3

OUTPUT:

If pos is None then the position dictionary of self is investigated, otherwise the position dictionary provided in pos is investigated. The function returns True if the dictionary is of the correct form for self.

EXAMPLES:

sage: p = {0: [1, 5], 1: [0, 2], 2: [1, 3], 3: [8, 2], 4: [0, 9], 5: [0, 8], 6: [8, 1], 7: [9, 5], 8: [3, 5], 9: [6, 7]}
sage: G = graphs.PetersenGraph()
sage: G.check_pos_validity(p)
True
clear()

Empties the graph of vertices and edges and removes name, boundary, associated objects, and position information.

EXAMPLES:

sage: G=graphs.CycleGraph(4); G.set_vertices({0:'vertex0'})
sage: G.order(); G.size()
4
4
sage: len(G._pos)
4
sage: G.name()
'Cycle graph'
sage: G.get_vertex(0)
'vertex0'
sage: H = G.copy(implementation='c_graph', sparse=True)
sage: H.clear()
sage: H.order(); H.size()
0
0
sage: len(H._pos)
0
sage: H.name()
''
sage: H.get_vertex(0)
sage: H = G.copy(implementation='c_graph', sparse=False)
sage: H.clear()
sage: H.order(); H.size()
0
0
sage: len(H._pos)
0
sage: H.name()
''
sage: H.get_vertex(0)
sage: H = G.copy(implementation='networkx')
sage: H.clear()
sage: H.order(); H.size()
0
0
sage: len(H._pos)
0
sage: H.name()
''
sage: H.get_vertex(0)
cluster_transitivity()

Returns the transitivity (fraction of transitive triangles) of the graph.

The clustering coefficient of a graph is the fraction of possible triangles that are triangles, c_i = triangles_i /
(k_i\*(k_i-1)/2) where k_i is the degree of vertex i, [1]. A coefficient for the whole graph is the average of the c_i. Transitivity is the fraction of all possible triangles which are triangles, T = 3*triangles/triads, [1].

REFERENCE:

[1]Aric Hagberg, Dan Schult and Pieter Swart. NetworkX documentation. [Online] Available: https://networkx.lanl.gov/reference/networkx/

EXAMPLES:

sage: (graphs.FruchtGraph()).cluster_transitivity()
0.25
cluster_triangles(nbunch=None, with_labels=False)

Returns the number of triangles for nbunch of vertices as an ordered list.

The clustering coefficient of a graph is the fraction of possible triangles that are triangles, c_i = triangles_i /
(k_i\*(k_i-1)/2) where k_i is the degree of vertex i, [1]. A coefficient for the whole graph is the average of the c_i. Transitivity is the fraction of all possible triangles which are triangles, T = 3*triangles/triads, [HSSNX].

INPUT:

  • nbunch - The vertices to inspect. If nbunch=None, returns data for all vertices in the graph
  • with_labels - (boolean) default False returns list as above True returns dict keyed by vertex labels.

REFERENCE:

[HSSNX]Aric Hagberg, Dan Schult and Pieter Swart. NetworkX documentation. [Online] Available: https://networkx.lanl.gov/reference/networkx/

EXAMPLES:

sage: (graphs.FruchtGraph()).cluster_triangles()
[1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0]
sage: (graphs.FruchtGraph()).cluster_triangles(with_labels=True)
{0: 1, 1: 1, 2: 0, 3: 1, 4: 1, 5: 1, 6: 1, 7: 1, 8: 0, 9: 1, 10: 1, 11: 0}
sage: (graphs.FruchtGraph()).cluster_triangles(nbunch=[0,1,2])
[1, 1, 0]
clustering_average()

Returns the average clustering coefficient.

The clustering coefficient of a graph is the fraction of possible triangles that are triangles, c_i = triangles_i /
(k_i\*(k_i-1)/2) where k_i is the degree of vertex i, [1]. A coefficient for the whole graph is the average of the c_i. Transitivity is the fraction of all possible triangles which are triangles, T = 3*triangles/triads, [1].

REFERENCE:

EXAMPLES:

sage: (graphs.FruchtGraph()).clustering_average()
0.25
clustering_coeff(nbunch=None, with_labels=False, weights=False)

Returns the clustering coefficient for each vertex in nbunch as an ordered list.

The clustering coefficient of a graph is the fraction of possible triangles that are triangles, c_i = triangles_i /
(k_i\*(k_i-1)/2) where k_i is the degree of vertex i, [1]. A coefficient for the whole graph is the average of the c_i. Transitivity is the fraction of all possible triangles which are triangles, T = 3*triangles/triads, [1].

INPUT:

  • nbunch - the vertices to inspect (default None returns data on all vertices in graph)
  • with_labels - (boolean) default False returns list as above True returns dict keyed by vertex labels.
  • weights - default is False. If both with_labels and weights are True, then returns a clustering coefficient dict and a dict of weights based on degree. Weights are the fraction of connected triples in the graph that include the keyed vertex.

REFERENCE:

EXAMPLES:

sage: (graphs.FruchtGraph()).clustering_coeff()
[0.33333333333333331, 0.33333333333333331, 0.0, 0.33333333333333331, 0.33333333333333331, 0.33333333333333331, 0.33333333333333331, 0.33333333333333331, 0.0, 0.33333333333333331, 0.33333333333333331, 0.0]
sage: (graphs.FruchtGraph()).clustering_coeff(with_labels=True)
{0: 0.33333333333333331, 1: 0.33333333333333331, 2: 0.0, 3: 0.33333333333333331, 4: 0.33333333333333331, 5: 0.33333333333333331, 6: 0.33333333333333331, 7: 0.33333333333333331, 8: 0.0, 9: 0.33333333333333331, 10: 0.33333333333333331, 11: 0.0}
sage: (graphs.FruchtGraph()).clustering_coeff(with_labels=True,weights=True)
({0: 0.33333333333333331, 1: 0.33333333333333331, 2: 0.0, 3: 0.33333333333333331, 4: 0.33333333333333331, 5: 0.33333333333333331, 6: 0.33333333333333331, 7: 0.33333333333333331, 8: 0.0, 9: 0.33333333333333331, 10: 0.33333333333333331, 11: 0.0}, {0: 0.083333333333333329, 1: 0.083333333333333329, 2: 0.083333333333333329, 3: 0.083333333333333329, 4: 0.083333333333333329, 5: 0.083333333333333329, 6: 0.083333333333333329, 7: 0.083333333333333329, 8: 0.083333333333333329, 9: 0.083333333333333329, 10: 0.083333333333333329, 11: 0.083333333333333329})
sage: (graphs.FruchtGraph()).clustering_coeff(nbunch=[0,1,2])
[0.33333333333333331, 0.33333333333333331, 0.0]
sage: (graphs.FruchtGraph()).clustering_coeff(nbunch=[0,1,2],with_labels=True,weights=True)
({0: 0.33333333333333331, 1: 0.33333333333333331, 2: 0.0}, {0: 0.33333333333333331, 1: 0.33333333333333331, 2: 0.33333333333333331})
coarsest_equitable_refinement(partition, sparse=True)

Returns the coarsest partition which is finer than the input partition, and equitable with respect to self.

A partition is equitable with respect to a graph if for every pair of cells C1, C2 of the partition, the number of edges from a vertex of C1 to C2 is the same, over all vertices in C1.

A partition P1 is finer than P2 (P2 is coarser than P1) if every cell of P1 is a subset of a cell of P2.

INPUT:

  • partition - a list of lists
  • sparse - (default False) whether to use sparse or dense representation- for small graphs, use dense for speed

EXAMPLES:

sage: G = graphs.PetersenGraph()
sage: G.coarsest_equitable_refinement([[0],range(1,10)])
[[0], [2, 3, 6, 7, 8, 9], [1, 4, 5]]
sage: G = graphs.CubeGraph(3)
sage: verts = G.vertices()
sage: Pi = [verts[:1], verts[1:]]
sage: Pi
[['000'], ['001', '010', '011', '100', '101', '110', '111']]
sage: G.coarsest_equitable_refinement(Pi)
[['000'], ['011', '101', '110'], ['111'], ['001', '010', '100']]

Note that given an equitable partition, this function returns that partition:

sage: P = graphs.PetersenGraph()
sage: prt = [[0], [1, 4, 5], [2, 3, 6, 7, 8, 9]]
sage: P.coarsest_equitable_refinement(prt)
[[0], [1, 4, 5], [2, 3, 6, 7, 8, 9]]
sage: ss = (graphs.WheelGraph(6)).line_graph(labels=False)
sage: prt = [[(0, 1)], [(0, 2), (0, 3), (0, 4), (1, 2), (1, 4)], [(2, 3), (3, 4)]]
sage: ss.coarsest_equitable_refinement(prt)
...
TypeError: Partition ([[(0, 1)], [(0, 2), (0, 3), (0, 4), (1, 2), (1, 4)], [(2, 3), (3, 4)]]) is not valid for this graph: vertices are incorrect.
sage: ss = (graphs.WheelGraph(5)).line_graph(labels=False)
sage: ss.coarsest_equitable_refinement(prt)
[[(0, 1)], [(1, 2), (1, 4)], [(0, 3)], [(0, 2), (0, 4)], [(2, 3), (3, 4)]]

ALGORITHM: Brendan D. McKay’s Master’s Thesis, University of Melbourne, 1976.

complement()

Returns the complement of the (di)graph.

The complement of a graph has the same vertices, but exactly those edges that are not in the original graph. This is not well defined for graphs with multiple edges.

EXAMPLES:

sage: P = graphs.PetersenGraph()
sage: P.plot() # long time
sage: PC = P.complement()
sage: PC.plot() # long time
sage: graphs.TetrahedralGraph().complement().size()
0
sage: graphs.CycleGraph(4).complement().edges()
[(0, 2, None), (1, 3, None)]
sage: graphs.CycleGraph(4).complement()
complement(Cycle graph): Graph on 4 vertices
sage: G = Graph(multiedges=True, sparse=True)
sage: G.add_edges([(0,1)]*3)
sage: G.complement()
...
TypeError: Complement not well defined for (di)graphs with multiple edges.
connected_component_containing_vertex(vertex)

Returns a list of the vertices connected to vertex.

EXAMPLES:

sage: G = Graph( { 0 : [1, 3], 1 : [2], 2 : [3], 4 : [5, 6], 5 : [6] } )
sage: G.connected_component_containing_vertex(0)
[0, 1, 2, 3]
sage: D = DiGraph( { 0 : [1, 3], 1 : [2], 2 : [3], 4 : [5, 6], 5 : [6] } )
sage: D.connected_component_containing_vertex(0)
[0, 1, 2, 3]
connected_components()

Returns a list of lists of vertices, each list representing a connected component. The list is ordered from largest to smallest component.

EXAMPLES:

sage: G = Graph( { 0 : [1, 3], 1 : [2], 2 : [3], 4 : [5, 6], 5 : [6] } )
sage: G.connected_components()
[[0, 1, 2, 3], [4, 5, 6]]
sage: D = DiGraph( { 0 : [1, 3], 1 : [2], 2 : [3], 4 : [5, 6], 5 : [6] } )
sage: D.connected_components()
[[0, 1, 2, 3], [4, 5, 6]]
connected_components_number()

Returns the number of connected components.

EXAMPLES:

sage: G = Graph( { 0 : [1, 3], 1 : [2], 2 : [3], 4 : [5, 6], 5 : [6] } )
sage: G.connected_components_number()
2
sage: D = DiGraph( { 0 : [1, 3], 1 : [2], 2 : [3], 4 : [5, 6], 5 : [6] } )
sage: D.connected_components_number()
2
connected_components_subgraphs()

Returns a list of connected components as graph objects.

EXAMPLES:

sage: G = Graph( { 0 : [1, 3], 1 : [2], 2 : [3], 4 : [5, 6], 5 : [6] } )
sage: L = G.connected_components_subgraphs()
sage: graphs_list.show_graphs(L)
sage: D = DiGraph( { 0 : [1, 3], 1 : [2], 2 : [3], 4 : [5, 6], 5 : [6] } )
sage: L = D.connected_components_subgraphs()
sage: graphs_list.show_graphs(L)
copy(implementation='c_graph', sparse=None)

Creates a copy of the graph.

INPUT:

  • implementation - string (default: ‘networkx’) the implementation goes here. Current options are only ‘networkx’ or ‘c_graph’.
  • sparse - boolean (default: None) whether the graph given is sparse or not.

OUTPUT:

A Graph object.

Warning

Please use this method only if you need to copy but change the underlying implementation. Otherwise simply do copy(g) instead of doing g.copy().

EXAMPLES:

sage: g=Graph({0:[0,1,1,2]},loops=True,multiedges=True,sparse=True)
sage: g==copy(g)
True
sage: g=DiGraph({0:[0,1,1,2],1:[0,1]},loops=True,multiedges=True,sparse=True)
sage: g==copy(g)
True

Note that vertex associations are also kept:

sage: d = {0 : graphs.DodecahedralGraph(), 1 : graphs.FlowerSnark(), 2 : graphs.MoebiusKantorGraph(), 3 : graphs.PetersenGraph() }
sage: T = graphs.TetrahedralGraph()
sage: T.set_vertices(d)
sage: T2 = copy(T)
sage: T2.get_vertex(0)
Dodecahedron: Graph on 20 vertices

Notice that the copy is at least as deep as the objects:

sage: T2.get_vertex(0) is T.get_vertex(0)
False

Examples of the keywords in use:

sage: G = graphs.CompleteGraph(19)
sage: H = G.copy(implementation='c_graph')
sage: H == G; H is G
True
False
sage: G1 = G.copy(sparse=True)
sage: G1==G
True
sage: G1 is G
False
sage: G2 = copy(G)
sage: G2 is G
False

TESTS: We make copies of the _pos and _boundary attributes.

sage: g = graphs.PathGraph(3)
sage: h = copy(g)
sage: h._pos is g._pos
False
sage: h._boundary is g._boundary
False
cores(with_labels=False)

Returns the core number for each vertex in an ordered list.

K-cores in graph theory were introduced by Seidman in 1983 and by Bollobas in 1984 as a method of (destructively) simplifying graph topology to aid in analysis and visualization. They have been more recently defined as the following by Batagelj et al: given a graph G with vertices set V and edges set E, the k-core is computed by pruning all the vertices (with their respective edges) with degree less than k. That means that if a vertex u has degree d_u, and it has n neighbors with degree less than k, then the degree of u becomes d_u -
n, and it will be also pruned if k > d_u - n. This operation can be useful to filter or to study some properties of the graphs. For instance, when you compute the 2-core of graph G, you are cutting all the vertices which are in a tree part of graph. (A tree is a graph with no loops). [WPkcore]

[PSW1996] defines a k-core as the largest subgraph with minimum degree at least k.

This implementation is based on the NetworkX implementation of the algorithm described in [BZ].

INPUT:

  • with_labels - default False returns list as described above. True returns dict keyed by vertex labels.

REFERENCE:

[WPkcore]K-core. Wikipedia. (2007). [Online] Available: http://en.wikipedia.org/wiki/K-core
[PSW1996]Boris Pittel, Joel Spencer and Nicholas Wormald. Sudden Emergence of a Giant k-Core in a Random Graph. (1996). J. Combinatorial Theory. Ser B 67. pages 111-151. [Online] Available: http://cs.nyu.edu/cs/faculty/spencer/papers/k-core.pdf
[BZ]Vladimir Batagelj and Matjaz Zaversnik. An O(m) Algorithm for Cores Decomposition of Networks. arXiv:cs/0310049v1. [Online] Available: http://arxiv.org/abs/cs/0310049

EXAMPLES:

sage: (graphs.FruchtGraph()).cores()
[3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3]
sage: (graphs.FruchtGraph()).cores(with_labels=True)
{0: 3, 1: 3, 2: 3, 3: 3, 4: 3, 5: 3, 6: 3, 7: 3, 8: 3, 9: 3, 10: 3, 11: 3}
sage: a=random_matrix(ZZ,20,x=2,sparse=True, density=.1) 
sage: b=DiGraph(20) 
sage: b.add_edges(a.nonzero_positions()) 
sage: cores=b.cores(with_labels=True); cores
{0: 3, 1: 3, 2: 3, 3: 3, 4: 2, 5: 2, 6: 3, 7: 1, 8: 3, 9: 3, 10: 3, 11: 3, 12: 3, 13: 3, 14: 2, 15: 3, 16: 3, 17: 3, 18: 3, 19: 3}
sage: [v for v,c in cores.items() if c>=2] # the vertices in the 2-core
[0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]
degree(vertices=None, labels=False)

Gives the degree (in + out for digraphs) of a vertex or of vertices.

INPUT:

  • vertices - If vertices is a single vertex, returns the number of neighbors of vertex. If vertices is an iterable container of vertices, returns a list of degrees. If vertices is None, same as listing all vertices.
  • labels - see OUTPUT

OUTPUT: Single vertex- an integer. Multiple vertices- a list of integers. If labels is True, then returns a dictionary mapping each vertex to its degree.

EXAMPLES:

sage: P = graphs.PetersenGraph()
sage: P.degree(5)
3
sage: K = graphs.CompleteGraph(9)
sage: K.degree()
[8, 8, 8, 8, 8, 8, 8, 8, 8]
sage: D = DiGraph( { 0: [1,2,3], 1: [0,2], 2: [3], 3: [4], 4: [0,5], 5: [1] } )
sage: D.degree(vertices = [0,1,2], labels=True)
{0: 5, 1: 4, 2: 3}
sage: D.degree()
[5, 4, 3, 3, 3, 2]
degree_histogram()

Returns a list, whose ith entry is the frequency of degree i.

EXAMPLES:

sage: G = graphs.Grid2dGraph(9,12)
sage: G.degree_histogram()
[0, 0, 4, 34, 70]
sage: G = graphs.Grid2dGraph(9,12).to_directed()
sage: G.degree_histogram()
[0, 0, 0, 0, 4, 0, 34, 0, 70]
degree_iterator(vertices=None, labels=False)

Returns an iterator over the degrees of the (di)graph. In the case of a digraph, the degree is defined as the sum of the in-degree and the out-degree, i.e. the total number of edges incident to a given vertex.

INPUT: labels=False: returns an iterator over degrees. labels=True: returns an iterator over tuples (vertex, degree).

  • vertices - if specified, restrict to this subset.

EXAMPLES:

sage: G = graphs.Grid2dGraph(3,4)
sage: for i in G.degree_iterator():
...    print i
3
4
2
...
2
4
sage: for i in G.degree_iterator(labels=True):
...    print i
((0, 1), 3)
((1, 2), 4)
((0, 0), 2)
...
((0, 3), 2)
((1, 1), 4)
sage: D = graphs.Grid2dGraph(2,4).to_directed()
sage: for i in D.degree_iterator():
...    print i
6
6
...
4
6
sage: for i in D.degree_iterator(labels=True):
...    print i
((0, 1), 6)
((1, 2), 6)
...
((0, 3), 4)
((1, 1), 6)
degree_sequence()

Return the degree sequence of this (di)graph.

EXAMPLES:

The degree sequence of an undirected graph:

sage: g = Graph({1: [2, 5], 2: [1, 5, 3, 4], 3: [2, 5], 4: [3], 5: [2, 3]})
sage: g.degree_sequence()
[4, 3, 3, 2, 2]

The degree sequence of a digraph:

sage: g = DiGraph({1: [2, 5, 6], 2: [3, 6], 3: [4, 6], 4: [6], 5: [4, 6]})
sage: g.degree_sequence()
[5, 3, 3, 3, 3, 3]

Degree sequences of some common graphs:

sage: graphs.PetersenGraph().degree_sequence()
[3, 3, 3, 3, 3, 3, 3, 3, 3, 3]
sage: graphs.HouseGraph().degree_sequence()
[3, 3, 2, 2, 2]
sage: graphs.FlowerSnark().degree_sequence()
[3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3]
degree_to_cell(vertex, cell)

Returns the number of edges from vertex to an edge in cell. In the case of a digraph, returns a tuple (in_degree, out_degree).

EXAMPLES:

sage: G = graphs.CubeGraph(3)
sage: cell = G.vertices()[:3]
sage: G.degree_to_cell('011', cell)
2
sage: G.degree_to_cell('111', cell)
0
sage: D = DiGraph({ 0:[1,2,3], 1:[3,4], 3:[4,5]})
sage: cell = [0,1,2]
sage: D.degree_to_cell(5, cell)
(0, 0)
sage: D.degree_to_cell(3, cell)
(2, 0)
sage: D.degree_to_cell(0, cell)
(0, 2)
delete_edge(u, v=None, label=None)

Delete the edge from u to v, returning silently if vertices or edge does not exist.

INPUT: The following forms are all accepted:

  • G.delete_edge( 1, 2 )
  • G.delete_edge( (1, 2) )
  • G.delete_edges( [ (1, 2) ] )
  • G.delete_edge( 1, 2, ‘label’ )
  • G.delete_edge( (1, 2, ‘label’) )
  • G.delete_edges( [ (1, 2, ‘label’) ] )

EXAMPLES:

sage: G = graphs.CompleteGraph(19).copy(implementation='c_graph')
sage: G.size()
171
sage: G.delete_edge( 1, 2 )
sage: G.delete_edge( (3, 4) )
sage: G.delete_edges( [ (5, 6), (7, 8) ] )
sage: G.size()
167

Note that NetworkX accidentally deletes these edges, even though the labels do not match up:

sage: N = graphs.CompleteGraph(19).copy(implementation='networkx')
sage: N.size()
171
sage: N.delete_edge( 1, 2 )
sage: N.delete_edge( (3, 4) )
sage: N.delete_edges( [ (5, 6), (7, 8) ] )
sage: N.size()
167
sage: N.delete_edge( 9, 10, 'label' )
sage: N.delete_edge( (11, 12, 'label') )
sage: N.delete_edges( [ (13, 14, 'label') ] )
sage: N.size()
167
sage: N.has_edge( (11, 12) )
True

However, CGraph backends handle things properly:

sage: G.delete_edge( 9, 10, 'label' )
sage: G.delete_edge( (11, 12, 'label') )
sage: G.delete_edges( [ (13, 14, 'label') ] )
sage: G.size()
167            
sage: C = graphs.CompleteGraph(19).to_directed(sparse=True)
sage: C.size()
342
sage: C.delete_edge( 1, 2 )
sage: C.delete_edge( (3, 4) )
sage: C.delete_edges( [ (5, 6), (7, 8) ] )

sage: D = graphs.CompleteGraph(19).to_directed(sparse=True, implementation='networkx')
sage: D.size()
342
sage: D.delete_edge( 1, 2 )
sage: D.delete_edge( (3, 4) )
sage: D.delete_edges( [ (5, 6), (7, 8) ] )
sage: D.delete_edge( 9, 10, 'label' )
sage: D.delete_edge( (11, 12, 'label') )
sage: D.delete_edges( [ (13, 14, 'label') ] )
sage: D.size()
338
sage: D.has_edge( (11, 12) )
True
sage: C.delete_edge( 9, 10, 'label' )
sage: C.delete_edge( (11, 12, 'label') )
sage: C.delete_edges( [ (13, 14, 'label') ] )
sage: C.size() # correct!
338
sage: C.has_edge( (11, 12) ) # correct!
True
delete_edges(edges)

Delete edges from an iterable container.

EXAMPLES:

sage: K12 = graphs.CompleteGraph(12)
sage: K4 = graphs.CompleteGraph(4)
sage: K12.size()
66
sage: K12.delete_edges(K4.edge_iterator())
sage: K12.size()
60
sage: K12 = graphs.CompleteGraph(12).to_directed()
sage: K4 = graphs.CompleteGraph(4).to_directed()
sage: K12.size()
132
sage: K12.delete_edges(K4.edge_iterator())
sage: K12.size()
120
delete_multiedge(u, v)

Deletes all edges from u and v.

EXAMPLES:

sage: G = Graph(multiedges=True,sparse=True)
sage: G.add_edges([(0,1), (0,1), (0,1), (1,2), (2,3)])
sage: G.edges()
[(0, 1, None), (0, 1, None), (0, 1, None), (1, 2, None), (2, 3, None)]
sage: G.delete_multiedge( 0, 1 )
sage: G.edges()
[(1, 2, None), (2, 3, None)]
sage: D = DiGraph(multiedges=True,sparse=True)
sage: D.add_edges([(0,1,1), (0,1,2), (0,1,3), (1,0), (1,2), (2,3)])
sage: D.edges()
[(0, 1, 1), (0, 1, 2), (0, 1, 3), (1, 0, None), (1, 2, None), (2, 3, None)]
sage: D.delete_multiedge( 0, 1 )
sage: D.edges()
[(1, 0, None), (1, 2, None), (2, 3, None)]
delete_vertex(vertex, in_order=False)

Deletes vertex, removing all incident edges. Deleting a non-existent vertex will raise an exception.

INPUT:

  • in_order - (default False) If True, this deletes the ith vertex in the sorted list of vertices, i.e. G.vertices()[i]

EXAMPLES:

sage: G = Graph(graphs.WheelGraph(9))
sage: G.delete_vertex(0); G.show()
sage: D = DiGraph({0:[1,2,3,4,5],1:[2],2:[3],3:[4],4:[5],5:[1]})
sage: D.delete_vertex(0); D
Digraph on 5 vertices
sage: D.vertices()
[1, 2, 3, 4, 5]
sage: D.delete_vertex(0)
...
RuntimeError: Vertex (0) not in the graph.
sage: G = graphs.CompleteGraph(4).line_graph(labels=False)
sage: G.vertices()
[(0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 3)]
sage: G.delete_vertex(0, in_order=True)
sage: G.vertices()
[(0, 2), (0, 3), (1, 2), (1, 3), (2, 3)]
sage: G = graphs.PathGraph(5)
sage: G.set_vertices({0: 'no delete', 1: 'delete'})
sage: G.set_boundary([1,2])
sage: G.delete_vertex(1)
sage: G.get_vertices()
{0: 'no delete', 2: None, 3: None, 4: None}
sage: G.get_boundary()
[2]
sage: G.get_pos()
{0: (0, 0), 2: (2, 0), 3: (3, 0), 4: (4, 0)}
delete_vertices(vertices)

Remove vertices from the (di)graph taken from an iterable container of vertices. Deleting a non-existent vertex will raise an exception.

EXAMPLES:

sage: D = DiGraph({0:[1,2,3,4,5],1:[2],2:[3],3:[4],4:[5],5:[1]})
sage: D.delete_vertices([1,2,3,4,5]); D
Digraph on 1 vertex
sage: D.vertices()
[0]
sage: D.delete_vertices([1])
...
RuntimeError: Vertex (1) not in the graph.
density()

Returns the density (number of edges divided by number of possible edges).

In the case of a multigraph, raises an error, since there is an infinite number of possible edges.

EXAMPLES:

sage: d = {0: [1,4,5], 1: [2,6], 2: [3,7], 3: [4,8], 4: [9], 5: [7, 8], 6: [8,9], 7: [9]}
sage: G = Graph(d); G.density()
1/3
sage: G = Graph({0:[1,2], 1:[0] }); G.density()
2/3
sage: G = DiGraph({0:[1,2], 1:[0] }); G.density()
1/2

Note that there are more possible edges on a looped graph:

sage: G.allow_loops(True)
sage: G.density()
1/3

Returns an iterator over the vertices in a depth-first ordering.

INPUT:

  • start - vertex or list of vertices from which to start the traversal
  • ignore_direction - (default False) only applies to directed graphs. If True, searches across edges in either direction.
  • distance - the maximum distance from the start nodes to traverse. The start nodes are distance zero from themselves.
  • neighbors - a function giving the neighbors of a vertex. The function should take a vertex and return a list of vertices. For a graph, neighbors is by default the neighbors() function of the graph. For a digraph, the neighbors function defaults to the successors() function of the graph.

See also

EXAMPLES:

sage: G = Graph( { 0: [1], 1: [2], 2: [3], 3: [4], 4: [0]} )
sage: list(G.depth_first_search(0))
[0, 4, 3, 2, 1]

By default, the edge direction of a digraph is respected, but this can be overridden by the ignore_direction parameter:

sage: D = DiGraph( { 0: [1,2,3], 1: [4,5], 2: [5], 3: [6], 5: [7], 6: [7], 7: [0]})
sage: list(D.depth_first_search(0))
[0, 3, 6, 7, 2, 5, 1, 4]
sage: list(D.depth_first_search(0, ignore_direction=True))
[0, 7, 6, 3, 5, 2, 1, 4]

You can specify a maximum distance in which to search. A distance of zero returns the start vertices:

sage: D = DiGraph( { 0: [1,2,3], 1: [4,5], 2: [5], 3: [6], 5: [7], 6: [7], 7: [0]})
sage: list(D.depth_first_search(0,distance=0))
[0]
sage: list(D.depth_first_search(0,distance=1))
[0, 3, 2, 1]

Multiple starting vertices can be specified in a list:

sage: D = DiGraph( { 0: [1,2,3], 1: [4,5], 2: [5], 3: [6], 5: [7], 6: [7], 7: [0]})
sage: list(D.depth_first_search([0]))                                    
[0, 3, 6, 7, 2, 5, 1, 4]
sage: list(D.depth_first_search([0,6]))
[0, 3, 6, 7, 2, 5, 1, 4]
sage: list(D.depth_first_search([0,6],distance=0))
[0, 6]
sage: list(D.depth_first_search([0,6],distance=1))
[0, 3, 2, 1, 6, 7]
sage: list(D.depth_first_search(6,ignore_direction=True,distance=2))
[6, 7, 5, 0, 3]

More generally, you can specify a neighbors function. For example, you can traverse the graph backwards by setting neighbors to be the predecessor() function of the graph:

sage: D = DiGraph( { 0: [1,2,3], 1: [4,5], 2: [5], 3: [6], 5: [7], 6: [7], 7: [0]})
sage: list(D.depth_first_search(5,neighbors=D.neighbors_in, distance=2))
[5, 2, 0, 1]
sage: list(D.depth_first_search(5,neighbors=D.neighbors_out, distance=2))  
[5, 7, 0]
sage: list(D.depth_first_search(5,neighbors=D.neighbors, distance=2)) 
[5, 7, 6, 0, 2, 1, 4]

TESTS:

sage: D = DiGraph({1:[0], 2:[0]})
sage: list(D.depth_first_search(0))
[0]
sage: list(D.depth_first_search(0, ignore_direction=True))
[0, 2, 1]
diameter()

Returns the largest distance between any two vertices. Returns Infinity if the (di)graph is not connected.

EXAMPLES:

sage: G = graphs.PetersenGraph()
sage: G.diameter()
2
sage: G = Graph( { 0 : [], 1 : [], 2 : [1] } )
sage: G.diameter()
+Infinity

Although max( ) is usually defined as -Infinity, since the diameter will never be negative, we define it to be zero:

sage: G = graphs.EmptyGraph()
sage: G.diameter()
0
disjoint_routed_paths(pairs, solver=None, verbose=0)

Returns a set of disjoint routed paths.

Given a set of pairs (s_i,t_i), a set of disjoint routed paths is a set of s_i-t_i paths which can interset at their endpoints and are vertex-disjoint otherwise.

INPUT:

  • pairs – list of pairs of vertices
  • solver – Specify a Linear Program solver to be used. If set to None, the default one is used. function of MixedIntegerLinearProgram. See the documentation of MixedIntegerLinearProgram.solve for more informations.
  • verbose (integer) – sets the level of verbosity. Set to 0 by default (quiet).

EXAMPLE:

Given a grid, finding two vertex-disjoint paths, the first one from the top-left corner to the bottom-left corner, and the second from the top-right corner to the bottom-right corner is ... easy

sage: g = graphs.GridGraph([5,5])
sage: p1,p2 = g.disjoint_routed_paths( [((0,0), (0,4)), ((4,4), (4,0))])

Though there is obviously no solution to the problem in which each corner is sending information to the opposite one:

sage: g = graphs.GridGraph([5,5])
sage: p1,p2 = g.disjoint_routed_paths( [((0,0), (4,4)), ((0,4), (4,0))])
...
ValueError: The disjoint routed paths do not exist.
disjoint_union(other, verbose_relabel=True)

Returns the disjoint union of self and other.

If the graphs have common vertices, the vertices will be renamed to form disjoint sets.

INPUT:

  • verbose_relabel - (defaults to True) If True and the graphs have common vertices, then each vertex v in the first graph will be changed to ‘0,v’ and each vertex u in the second graph will be changed to ‘1,u’. If False, the vertices of the first graph and the second graph will be relabeled with consecutive integers.

EXAMPLES:

sage: G = graphs.CycleGraph(3)
sage: H = graphs.CycleGraph(4)
sage: J = G.disjoint_union(H); J
Cycle graph disjoint_union Cycle graph: Graph on 7 vertices
sage: J.vertices()
[(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (1, 3)]
sage: J = G.disjoint_union(H, verbose_relabel=False); J
Cycle graph disjoint_union Cycle graph: Graph on 7 vertices
sage: J.vertices()
[0, 1, 2, 3, 4, 5, 6]

If the vertices are already disjoint and verbose_relabel is True, then the vertices are not relabeled.

sage: G=Graph({'a': ['b']})
sage: G.name("Custom path")
sage: G.name()
'Custom path'
sage: H=graphs.CycleGraph(3)
sage: J=G.disjoint_union(H); J
Custom path disjoint_union Cycle graph: Graph on 5 vertices
sage: J.vertices()
[0, 1, 2, 'a', 'b']
disjunctive_product(other)

Returns the disjunctive product of self and other.

The disjunctive product of G and H is the graph L with vertex set V(L) equal to the Cartesian product of the vertices V(G) and V(H), and ((u,v), (w,x)) is an edge iff either - (u, w) is an edge of self, or - (v, x) is an edge of other.

EXAMPLES:

sage: Z = graphs.CompleteGraph(2)
sage: D = Z.disjunctive_product(Z); D
Graph on 4 vertices
sage: D.plot() # long time
sage: C = graphs.CycleGraph(5)
sage: D = C.disjunctive_product(Z); D
Graph on 10 vertices
sage: D.plot() # long time
distance(u, v)

Returns the (directed) distance from u to v in the (di)graph, i.e. the length of the shortest path from u to v.

EXAMPLES:

sage: G = graphs.CycleGraph(9)
sage: G.distance(0,1)
1
sage: G.distance(0,4)
4
sage: G.distance(0,5)
4
sage: G = Graph( {0:[], 1:[]} )
sage: G.distance(0,1)
+Infinity
distance_all_pairs()

Returns the distances between all pairs of vertices.

OUTPUT:

A doubly indexed dictionary

EXAMPLE:

The Petersen Graph:

sage: g = graphs.PetersenGraph()
sage: print g.distance_all_pairs()
{0: {0: 0, 1: 1, 2: 2, 3: 2, 4: 1, 5: 1, 6: 2, 7: 2, 8: 2, 9: 2}, 1: {0: 1, 1: 0, 2: 1, 3: 2, 4: 2, 5: 2, 6: 1, 7: 2, 8: 2, 9: 2}, 2: {0: 2, 1: 1, 2: 0, 3: 1, 4: 2, 5: 2, 6: 2, 7: 1, 8: 2, 9: 2}, 3: {0: 2, 1: 2, 2: 1, 3: 0, 4: 1, 5: 2, 6: 2, 7: 2, 8: 1, 9: 2}, 4: {0: 1, 1: 2, 2: 2, 3: 1, 4: 0, 5: 2, 6: 2, 7: 2, 8: 2, 9: 1}, 5: {0: 1, 1: 2, 2: 2, 3: 2, 4: 2, 5: 0, 6: 2, 7: 1, 8: 1, 9: 2}, 6: {0: 2, 1: 1, 2: 2, 3: 2, 4: 2, 5: 2, 6: 0, 7: 2, 8: 1, 9: 1}, 7: {0: 2, 1: 2, 2: 1, 3: 2, 4: 2, 5: 1, 6: 2, 7: 0, 8: 2, 9: 1}, 8: {0: 2, 1: 2, 2: 2, 3: 1, 4: 2, 5: 1, 6: 1, 7: 2, 8: 0, 9: 2}, 9: {0: 2, 1: 2, 2: 2, 3: 2, 4: 1, 5: 2, 6: 1, 7: 1, 8: 2, 9: 0}}

Testing on Random Graphs:

sage: g = graphs.RandomGNP(20,.3)
sage: distances = g.distance_all_pairs()
sage: all([g.distance(0,v) == distances[0][v] for v in g])
True
distance_graph(dist)

Returns the graph on the same vertex set as the original graph but vertices are adjacent in the returned graph if and only if they are at specified distances in the original graph.

INPUT:

  • dist is a nonnegative integer or a list of nonnegative integers. Infinity may be used here to describe vertex pairs in separate components.

OUTPUT:

The returned value is an undirected graph. The vertex set is identical to the calling graph, but edges of the returned graph join vertices whose distance in the calling graph are present in the input dist. Loops will only be present if distance 0 is included. If the original graph has a position dictionary specifying locations of vertices for plotting, then this information is copied over to the distance graph. In some instances this layout may not be the best, and might even be confusing when edges run on top of each other due to symmetries chosen for the layout.

EXAMPLES:

sage: G = graphs.CompleteGraph(3)
sage: H = G.cartesian_product(graphs.CompleteGraph(2))
sage: K = H.distance_graph(2)
sage: K.am()
[0 0 0 1 0 1]
[0 0 1 0 1 0]
[0 1 0 0 0 1]
[1 0 0 0 1 0]
[0 1 0 1 0 0]
[1 0 1 0 0 0]

To obtain the graph where vertices are adjacent if their distance apart is d or less use a range() command to create the input, using d+1 as the input to range. Notice that this will include distance 0 and hence place a loop at each vertex. To avoid this, use range(1,d+1).

sage: G = graphs.OddGraph(4)
sage: d = G.diameter()
sage: n = G.num_verts()
sage: H = G.distance_graph(range(d+1))
sage: H.is_isomorphic(graphs.CompleteGraph(n))
False
sage: H = G.distance_graph(range(1,d+1))
sage: H.is_isomorphic(graphs.CompleteGraph(n))
True

A complete collection of distance graphs will have adjacency matrices that sum to the matrix of all ones.

sage: P = graphs.PathGraph(20)
sage: all_ones = sum([P.distance_graph(i).am() for i in range(20)])
sage: all_ones == matrix(ZZ, 20, 20, [1]*400)
True

Four-bit strings differing in one bit is the same as four-bit strings differing in three bits.

sage: G = graphs.CubeGraph(4)
sage: H = G.distance_graph(3)
sage: G.is_isomorphic(H)
True

The graph of eight-bit strings, adjacent if different in an odd number of bits.

sage: G = graphs.CubeGraph(8) # long time
sage: H = G.distance_graph([1,3,5,7]) # long time
sage: degrees = [0]*sum([binomial(8,j) for j in [1,3,5,7]]) # long time
sage: degrees.append(2^8) # long time
sage: degrees == H.degree_histogram() # long time
True

An example of using Infinity as the distance in a graph that is not connected.

sage: G = graphs.CompleteGraph(3)
sage: H = G.disjoint_union(graphs.CompleteGraph(2))
sage: L = H.distance_graph(Infinity)
sage: L.am()
[0 0 0 1 1]
[0 0 0 1 1]
[0 0 0 1 1]
[1 1 1 0 0]
[1 1 1 0 0]

TESTS:

Empty input, or unachievable distances silently yield empty graphs.

sage: G = graphs.CompleteGraph(5)
sage: G.distance_graph([]).num_edges()
0
sage: G = graphs.CompleteGraph(5)
sage: G.distance_graph(23).num_edges()
0

It is an error to provide a distance that is not an integer type.

sage: G = graphs.CompleteGraph(5)
sage: G.distance_graph('junk')
...
TypeError: unable to convert x (=junk) to an integer

It is an error to provide a negative distance.

sage: G = graphs.CompleteGraph(5)
sage: G.distance_graph(-3)
...
ValueError: Distance graph for a negative distance (d=-3) is not defined

AUTHOR:

Rob Beezer, 2009-11-25

dominating_set(independent=False, value_only=False, solver=None, verbose=0)

Returns a minimum dominating set of the graph represented by the list of its vertices. For more information, see the Wikipedia article on dominating sets.

A minimum dominating set S of a graph G is a set of its vertices of minimal cardinality such that any vertex of G is in S or has one of its neighbors in S.

As an optimization problem, it can be expressed as:

\mbox{Minimize : }&\sum_{v\in G} b_v\\
\mbox{Such that : }&\forall v \in G, b_v+\sum_{(u,v)\in G.edges()} b_u\geq 1\\
&\forall x\in G, b_x\mbox{ is a binary variable}

INPUT:

  • independent – boolean (default: False). If independent=True, computes a minimum independent dominating set.
  • value_only – boolean (default: False)
    • If True, only the cardinality of a minimum dominating set is returned.
    • If False (default), a minimum dominating set is returned as the list of its vertices.
  • solver – (default: None) Specify a Linear Program (LP) solver to be used. If set to None, the default one is used. For more information on LP solvers and which default solver is used, see the method solve of the class MixedIntegerLinearProgram.
  • verbose – integer (default: 0). Sets the level of verbosity. Set to 0 by default, which means quiet.

EXAMPLES:

A basic illustration on a PappusGraph:

sage: g=graphs.PappusGraph()
sage: g.dominating_set(value_only=True)
5.0

If we build a graph from two disjoint stars, then link their centers we will find a difference between the cardinality of an independent set and a stable independent set:

sage: g = 2 * graphs.StarGraph(5)
sage: g.add_edge(0,6)
sage: len(g.dominating_set())
2
sage: len(g.dominating_set(independent=True))
6
eccentricity(v=None, dist_dict=None, with_labels=False)

Return the eccentricity of vertex (or vertices) v.

The eccentricity of a vertex is the maximum distance to any other vertex.

INPUT:

  • v - either a single vertex or a list of vertices. If it is not specified, then it is taken to be all vertices.
  • dist_dict - optional, a dict of dicts of distance.
  • with_labels - Whether to return a list or a dict.

EXAMPLES:

sage: G = graphs.KrackhardtKiteGraph()
sage: G.eccentricity()
[4, 4, 4, 4, 4, 3, 3, 2, 3, 4]
sage: G.vertices()
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
sage: G.eccentricity(7)
2
sage: G.eccentricity([7,8,9])
[3, 4, 2]
sage: G.eccentricity([7,8,9], with_labels=True) == {8: 3, 9: 4, 7: 2}
True
sage: G = Graph( { 0 : [], 1 : [], 2 : [1] } )
sage: G.eccentricity()
[+Infinity, +Infinity, +Infinity]
sage: G = Graph({0:[]})
sage: G.eccentricity(with_labels=True)
{0: 0}
sage: G = Graph({0:[], 1:[]})
sage: G.eccentricity(with_labels=True)
{0: +Infinity, 1: +Infinity}
edge_boundary(vertices1, vertices2=None, labels=True)

Returns a list of edges (u,v,l) with u in vertices1 and v in vertices2. If vertices2 is None, then it is set to the complement of vertices1.

In a digraph, the external boundary of a vertex v are those vertices u with an arc (v, u).

INPUT:

  • labels - if False, each edge is a tuple (u,v) of vertices.

EXAMPLES:

sage: K = graphs.CompleteBipartiteGraph(9,3)
sage: len(K.edge_boundary( [0,1,2,3,4,5,6,7,8], [9,10,11] ))
27
sage: K.size()
27

Note that the edge boundary preserves direction:

sage: K = graphs.CompleteBipartiteGraph(9,3).to_directed()
sage: len(K.edge_boundary( [0,1,2,3,4,5,6,7,8], [9,10,11] ))
27
sage: K.size()
54
sage: D = DiGraph({0:[1,2], 3:[0]})
sage: D.edge_boundary([0])
[(0, 1, None), (0, 2, None)]
sage: D.edge_boundary([0], labels=False)
[(0, 1), (0, 2)]

TESTS:

sage: G = graphs.DiamondGraph()
sage: G.edge_boundary([0,1])
[(0, 2, {}), (1, 2, {}), (1, 3, {})]
sage: G = graphs.PetersenGraph()
sage: G.edge_boundary([0], [0])
[]
edge_connectivity(value_only=True, use_edge_labels=False, vertices=False, solver=None, verbose=0)

Returns the edge connectivity of the graph. For more information, see the Wikipedia article on connectivity.

INPUT:

  • value_only – boolean (default: True)
    • When set to True (default), only the value is returned.
    • When set to False, both the value and a minimum edge cut are returned.
  • use_edge_labels – boolean (default: False)
    • When set to True, computes a weighted minimum cut where each edge has a weight defined by its label. (If an edge has no label, 1 is assumed.)
    • When set to False, each edge has weight 1.
  • vertices – boolean (default: False)
    • When set to True, also returns the two sets of vertices that are disconnected by the cut. Implies value_only=False.
  • solver – (default: None) Specify a Linear Program (LP) solver to be used. If set to None, the default one is used. For more information on LP solvers and which default solver is used, see the method solve of the class MixedIntegerLinearProgram.
  • verbose – integer (default: 0). Sets the level of verbosity. Set to 0 by default, which means quiet.

EXAMPLES:

A basic application on the PappusGraph:

sage: g = graphs.PappusGraph()
sage: g.edge_connectivity()
3.0

The edge connectivity of a complete graph ( and of a random graph ) is its minimum degree, and one of the two parts of the bipartition is reduced to only one vertex. The cutedges isomorphic to a Star graph:

sage: g = graphs.CompleteGraph(5)
sage: [ value, edges, [ setA, setB ]] = g.edge_connectivity(vertices=True)
sage: print value
4.0
sage: len(setA) == 1 or len(setB) == 1
True
sage: cut = Graph()
sage: cut.add_edges(edges)
sage: cut.is_isomorphic(graphs.StarGraph(4))
True

Even if obviously in any graph we know that the edge connectivity is less than the minimum degree of the graph:

sage: g = graphs.RandomGNP(10,.3)
sage: min(g.degree()) >= g.edge_connectivity()
True

If we build a tree then assign to its edges a random value, the minimum cut will be the edge with minimum value:

sage: g = graphs.RandomGNP(15,.5)
sage: tree = Graph()
sage: tree.add_edges(g.min_spanning_tree())
sage: for u,v in tree.edge_iterator(labels=None):
...        tree.set_edge_label(u,v,random())
sage: minimum = min([l for u,v,l in tree.edge_iterator()])
sage: [value, [(u,v,l)]] = tree.edge_connectivity(value_only=False, use_edge_labels=True)
sage: l == minimum
True

When value_only = True, this function is optimized for small connexity values and does not need to build a linear program.

It is the case for connected graphs which are not connected

sage: g = 2 * graphs.PetersenGraph()
sage: g.edge_connectivity()
0.0

Or if they are just 1-connected

sage: g = graphs.PathGraph(10)
sage: g.edge_connectivity()
1.0

For directed graphs, the strong connexity is tested through the dedicated function

sage: g = digraphs.ButterflyGraph(3)
sage: g.edge_connectivity()
0.0
edge_cut(s, t, value_only=True, use_edge_labels=False, vertices=False, solver=None, verbose=0)

Returns a minimum edge cut between vertices s and t represented by a list of edges.

A minimum edge cut between two vertices s and t of self is a set A of edges of minimum weight such that the graph obtained by removing A from self is disconnected. For more information, see the Wikipedia article on cuts.

INPUT:

  • s – source vertex
  • t – sink vertex
  • value_only – boolean (default: True). When set to True, only the weight of a minimum cut is returned. Otherwise, a list of edges of a minimum cut is also returned.
  • use_edge_labels – boolean (default: False). When set to True, computes a weighted minimum cut where each edge has a weight defined by its label (if an edge has no label, 1 is assumed). Otherwise, each edge has weight 1.
  • vertices – boolean (default: False). When set to True, also returns the two sets of vertices that are disconnected by the cut. Implies value_only=False.
  • solver – (default: None) Specify a Linear Program (LP) solver to be used. If set to None, the default one is used. For more information on LP solvers and which default solver is used, see the method solve of the class MixedIntegerLinearProgram.
  • verbose – integer (default: 0). Sets the level of verbosity. Set to 0 by default, which means quiet.

OUTPUT:

Real number or tuple, depending on the given arguments (examples are given below).

EXAMPLES:

A basic application in the Pappus graph:

sage: g = graphs.PappusGraph()
sage: g.edge_cut(1, 2, value_only=True)
3.0

If the graph is a path with randomly weighted edges:

sage: g = graphs.PathGraph(15)
sage: for (u,v) in g.edge_iterator(labels=None):
...      g.set_edge_label(u,v,random())

The edge cut between the two ends is the edge of minimum weight:

sage: minimum = min([l for u,v,l in g.edge_iterator()])
sage: abs(minimum - g.edge_cut(0, 14, use_edge_labels=True)) < 10**(-5)
True
sage: [value,[[u,v]]] = g.edge_cut(0, 14, use_edge_labels=True, value_only=False)
sage: g.edge_label(u, v) == minimum
True

The two sides of the edge cut are obviously shorter paths:

sage: value,edges,[set1,set2] = g.edge_cut(0, 14, use_edge_labels=True, vertices=True)
sage: g.subgraph(set1).is_isomorphic(graphs.PathGraph(len(set1)))
True
sage: g.subgraph(set2).is_isomorphic(graphs.PathGraph(len(set2)))
True
sage: len(set1) + len(set2) == g.order()
True
edge_disjoint_paths(s, t)

Returns a list of edge-disjoint paths between two vertices as given by Menger’s theorem.

The edge version of Menger’s theorem asserts that the size of the minimum edge cut between two vertices s and`t` (the minimum number of edges whose removal disconnects s and t) is equal to the maximum number of pairwise edge-independent paths from s to t.

This function returns a list of such paths.

Note

This function is topological : it does not take the eventual weights of the edges into account.

EXAMPLE:

In a complete bipartite graph

sage: g = graphs.CompleteBipartiteGraph(2,3)
sage: g.edge_disjoint_paths(0,1)
[[0, 2, 1], [0, 3, 1], [0, 4, 1]]
edge_disjoint_spanning_trees(k, root=None, **kwds)

Returns the desired number of edge-disjoint spanning trees/arborescences.

INPUT:

  • k (integer) – the required number of edge-disjoint spanning trees/arborescences
  • root (vertex) – root of the disjoint arborescences when the graph is directed. If set to None, the first vertex in the graph is picked.
  • **kwds – arguments to be passed down to the solve function of MixedIntegerLinearProgram. See the documentation of MixedIntegerLinearProgram.solve for more informations.

ALGORITHM:

Mixed Integer Linear Program. The formulation can be found in [JVNC].

There are at least two possible rewritings of this method which do not use Linear Programming:

  • The algorithm presented in the paper entitled “A short proof of the tree-packing theorem”, by Thomas Kaiser [KaisPacking].
  • The implementation of a Matroid class and of the Matroid Union Theorem (see section 42.3 of [SchrijverCombOpt]), applied to the cycle Matroid (see chapter 51 of [SchrijverCombOpt]).

EXAMPLES:

The Petersen Graph does have a spanning tree (it is connected):

sage: g = graphs.PetersenGraph()
sage: [T] = g.edge_disjoint_spanning_trees(1)
sage: T.is_tree()
True

Though, it does not have 2 edge-disjoint trees (as it has less than 2(|V|-1) edges):

sage: g.edge_disjoint_spanning_trees(2)
...
ValueError: This graph does not contain the required number of trees/arborescences !

By Edmond’s theorem, a graph which is k-connected always has k edge-disjoint arborescences, regardless of the root we pick:

sage: g = digraphs.RandomDirectedGNP(30,.3)
sage: k = Integer(g.edge_connectivity())
sage: arborescences = g.edge_disjoint_spanning_trees(k)
sage: all([a.is_directed_acyclic() for a in arborescences])
True
sage: all([a.is_connected() for a in arborescences])
True            

In the undirected case, we can only ensure half of it:

sage: g = graphs.RandomGNP(30,.3)
sage: k = floor(Integer(g.edge_connectivity())/2)
sage: trees = g.edge_disjoint_spanning_trees(k)
sage: all([t.is_tree() for t in trees])
True

REFERENCES:

[JVNC]David Joyner, Minh Van Nguyen, and Nathann Cohen, Algorithmic Graph Theory, http://code.google.com/p/graph-theory-algorithms-book/
[KaisPacking]Thomas Kaiser A short proof of the tree-packing theorem http://arxiv.org/abs/0911.2809
[SchrijverCombOpt](1, 2) Alexander Schrijver Combinatorial optimization: polyhedra and efficiency 2003
edge_iterator(vertices=None, labels=True, ignore_direction=False)

Returns an iterator over the edges incident with any vertex given. If the graph is directed, iterates over edges going out only. If vertices is None, then returns an iterator over all edges. If self is directed, returns outgoing edges only.

INPUT:

  • labels - if False, each edge is a tuple (u,v) of vertices.
  • ignore_direction - (default False) only applies to directed graphs. If True, searches across edges in either direction.

EXAMPLES:

sage: for i in graphs.PetersenGraph().edge_iterator([0]):
...    print i
(0, 1, None)
(0, 4, None)
(0, 5, None)
sage: D = DiGraph( { 0 : [1,2], 1: [0] } )
sage: for i in D.edge_iterator([0]):
...    print i
(0, 1, None)
(0, 2, None)
sage: G = graphs.TetrahedralGraph()
sage: list(G.edge_iterator(labels=False))
[(0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 3)]
sage: D = DiGraph({1:[0], 2:[0]})
sage: list(D.edge_iterator(0))
[]
sage: list(D.edge_iterator(0, ignore_direction=True))
[(1, 0, None), (2, 0, None)]
edge_label(u, v=None)

Returns the label of an edge. Note that if the graph allows multiple edges, then a list of labels on the edge is returned.

EXAMPLES:

sage: G = Graph({0 : {1 : 'edgelabel'}}, sparse=True)
sage: G.edges(labels=False)
[(0, 1)]
sage: G.edge_label( 0, 1 )
'edgelabel'
sage: D = DiGraph({0 : {1 : 'edgelabel'}}, sparse=True)
sage: D.edges(labels=False)
[(0, 1)]
sage: D.edge_label( 0, 1 )
'edgelabel'
sage: G = Graph(multiedges=True, sparse=True)
sage: [G.add_edge(0,1,i) for i in range(1,6)]
[None, None, None, None, None]
sage: sorted(G.edge_label(0,1))
[1, 2, 3, 4, 5]
edge_labels()

Returns a list of edge labels.

EXAMPLES:

sage: G = Graph({0:{1:'x',2:'z',3:'a'}, 2:{5:'out'}}, sparse=True)
sage: G.edge_labels()
['x', 'z', 'a', 'out']
sage: G = DiGraph({0:{1:'x',2:'z',3:'a'}, 2:{5:'out'}}, sparse=True)
sage: G.edge_labels()
['x', 'z', 'a', 'out']
edges(labels=True, sort=True)

Return a list of edges. Each edge is a triple (u,v,l) where u and v are vertices and l is a label.

INPUT:

  • labels - (bool; default: True) if False, each edge is a tuple (u,v) of vertices.
  • sort - (bool; default: True) if True, ensure that the list of edges is sorted.

OUTPUT: A list of tuples. It is safe to change the returned list.

EXAMPLES:

sage: graphs.DodecahedralGraph().edges()
[(0, 1, {}), (0, 10, {}), (0, 19, {}), (1, 2, {}), (1, 8, {}), (2, 3, {}), (2, 6, {}), (3, 4, {}), (3, 19, {}), (4, 5, {}), (4, 17, {}), (5, 6, {}), (5, 15, {}), (6, 7, {}), (7, 8, {}), (7, 14, {}), (8, 9, {}), (9, 10, {}), (9, 13, {}), (10, 11, {}), (11, 12, {}), (11, 18, {}), (12, 13, {}), (12, 16, {}), (13, 14, {}), (14, 15, {}), (15, 16, {}), (16, 17, {}), (17, 18, {}), (18, 19, {})]
sage: graphs.DodecahedralGraph().edges(labels=False)
[(0, 1), (0, 10), (0, 19), (1, 2), (1, 8), (2, 3), (2, 6), (3, 4), (3, 19), (4, 5), (4, 17), (5, 6), (5, 15), (6, 7), (7, 8), (7, 14), (8, 9), (9, 10), (9, 13), (10, 11), (11, 12), (11, 18), (12, 13), (12, 16), (13, 14), (14, 15), (15, 16), (16, 17), (17, 18), (18, 19)]
sage: D = graphs.DodecahedralGraph().to_directed()
sage: D.edges()
[(0, 1, {}), (0, 10, {}), (0, 19, {}), (1, 0, {}), (1, 2, {}), (1, 8, {}), (2, 1, {}), (2, 3, {}), (2, 6, {}), (3, 2, {}), (3, 4, {}), (3, 19, {}), (4, 3, {}), (4, 5, {}), (4, 17, {}), (5, 4, {}), (5, 6, {}), (5, 15, {}), (6, 2, {}), (6, 5, {}), (6, 7, {}), (7, 6, {}), (7, 8, {}), (7, 14, {}), (8, 1, {}), (8, 7, {}), (8, 9, {}), (9, 8, {}), (9, 10, {}), (9, 13, {}), (10, 0, {}), (10, 9, {}), (10, 11, {}), (11, 10, {}), (11, 12, {}), (11, 18, {}), (12, 11, {}), (12, 13, {}), (12, 16, {}), (13, 9, {}), (13, 12, {}), (13, 14, {}), (14, 7, {}), (14, 13, {}), (14, 15, {}), (15, 5, {}), (15, 14, {}), (15, 16, {}), (16, 12, {}), (16, 15, {}), (16, 17, {}), (17, 4, {}), (17, 16, {}), (17, 18, {}), (18, 11, {}), (18, 17, {}), (18, 19, {}), (19, 0, {}), (19, 3, {}), (19, 18, {})]
sage: D.edges(labels = False)
[(0, 1), (0, 10), (0, 19), (1, 0), (1, 2), (1, 8), (2, 1), (2, 3), (2, 6), (3, 2), (3, 4), (3, 19), (4, 3), (4, 5), (4, 17), (5, 4), (5, 6), (5, 15), (6, 2), (6, 5), (6, 7), (7, 6), (7, 8), (7, 14), (8, 1), (8, 7), (8, 9), (9, 8), (9, 10), (9, 13), (10, 0), (10, 9), (10, 11), (11, 10), (11, 12), (11, 18), (12, 11), (12, 13), (12, 16), (13, 9), (13, 12), (13, 14), (14, 7), (14, 13), (14, 15), (15, 5), (15, 14), (15, 16), (16, 12), (16, 15), (16, 17), (17, 4), (17, 16), (17, 18), (18, 11), (18, 17), (18, 19), (19, 0), (19, 3), (19, 18)]
edges_incident(vertices=None, labels=True)

Returns a list of edges incident with any vertex given. If vertices is None, returns a list of all edges in graph. For digraphs, only lists outward edges.

INPUT:

  • label - if False, each edge is a tuple (u,v) of vertices.

EXAMPLES:

sage: graphs.PetersenGraph().edges_incident([0,9], labels=False)
[(0, 1), (0, 4), (0, 5), (4, 9), (6, 9), (7, 9)]
sage: D = DiGraph({0:[1]})
sage: D.edges_incident([0])
[(0, 1, None)]
sage: D.edges_incident([1])
[]
eigenspaces(laplacian=False)

Returns the right eigenspaces of the adjacency matrix of the graph.

INPUT:

  • laplacian - if True, use the Laplacian matrix (see kirchhoff_matrix())

OUTPUT:

A list of pairs. Each pair is an eigenvalue of the adjacency matrix of the graph, followed by the vector space that is the eigenspace for that eigenvalue, when the eigenvectors are placed on the right of the matrix.

For some graphs, some of the the eigenspaces are described exactly by vector spaces over a NumberField. For numerical eigenvectors use eigenvectors().

EXAMPLES:

sage: P = graphs.PetersenGraph()
sage: P.eigenspaces()
[
(3, Vector space of degree 10 and dimension 1 over Rational Field
User basis matrix:
[1 1 1 1 1 1 1 1 1 1]),
(-2, Vector space of degree 10 and dimension 4 over Rational Field
User basis matrix:
[ 1  0  0  0 -1 -1 -1  0  1  1]
[ 0  1  0  0 -1  0 -2 -1  1  2]
[ 0  0  1  0 -1  1 -1 -2  0  2]
[ 0  0  0  1 -1  1  0 -1 -1  1]),
(1, Vector space of degree 10 and dimension 5 over Rational Field
User basis matrix:
[ 1  0  0  0  0  1 -1  0  0 -1]
[ 0  1  0  0  0 -1  1 -1  0  0]
[ 0  0  1  0  0  0 -1  1 -1  0]
[ 0  0  0  1  0  0  0 -1  1 -1]
[ 0  0  0  0  1 -1  0  0 -1  1])
]

Eigenspaces for the Laplacian should be identical since the Petersen graph is regular. However, since the output also contains the eigenvalues, the two outputs are slightly different.

sage: P.eigenspaces(laplacian=True)
[
(0, Vector space of degree 10 and dimension 1 over Rational Field
User basis matrix:
[1 1 1 1 1 1 1 1 1 1]),
(5, Vector space of degree 10 and dimension 4 over Rational Field
User basis matrix:
[ 1  0  0  0 -1 -1 -1  0  1  1]
[ 0  1  0  0 -1  0 -2 -1  1  2]
[ 0  0  1  0 -1  1 -1 -2  0  2]
[ 0  0  0  1 -1  1  0 -1 -1  1]),
(2, Vector space of degree 10 and dimension 5 over Rational Field
User basis matrix:
[ 1  0  0  0  0  1 -1  0  0 -1]
[ 0  1  0  0  0 -1  1 -1  0  0]
[ 0  0  1  0  0  0 -1  1 -1  0]
[ 0  0  0  1  0  0  0 -1  1 -1]
[ 0  0  0  0  1 -1  0  0 -1  1])
]

Notice how one eigenspace below is described with a square root of 2. For the two possible values (positive and negative) there is a corresponding eigenspace.

sage: C = graphs.CycleGraph(8)
sage: C.eigenspaces()
[
(2, Vector space of degree 8 and dimension 1 over Rational Field
User basis matrix:
[1 1 1 1 1 1 1 1]),
(-2, Vector space of degree 8 and dimension 1 over Rational Field
User basis matrix:
[ 1 -1  1 -1  1 -1  1 -1]),
(0, Vector space of degree 8 and dimension 2 over Rational Field
User basis matrix:
[ 1  0 -1  0  1  0 -1  0]
[ 0  1  0 -1  0  1  0 -1]),
(a3, Vector space of degree 8 and dimension 2 over Number Field in a3 with defining polynomial x^2 - 2
User basis matrix:
[  1   0  -1 -a3  -1   0   1  a3]
[  0   1  a3   1   0  -1 -a3  -1])
]

A digraph may have complex eigenvalues and eigenvectors. For a 3-cycle, we have:

sage: T = DiGraph({0:[1], 1:[2], 2:[0]})
sage: T.eigenspaces()
[
(1, Vector space of degree 3 and dimension 1 over Rational Field
User basis matrix:
[1 1 1]),
(a1, Vector space of degree 3 and dimension 1 over Number Field in a1 with defining polynomial x^2 + x + 1
User basis matrix:
[      1      a1 -a1 - 1])
]
eigenvectors(laplacian=False)

Returns the right eigenvectors of the adjacency matrix of the graph.

INPUT:

  • laplacian - if True, use the Laplacian matrix (see kirchhoff_matrix())

OUTPUT:

A list of triples. Each triple begins with an eigenvalue of the adjacency matrix of the graph. This is followed by a list of eigenvectors for the eigenvalue, when the eigenvectors are placed on the right side of the matrix. Together, the eigenvectors form a basis for the eigenspace. The triple concludes with the algebraic multiplicity of the eigenvalue.

For some graphs, the exact eigenspaces provided by eigenspaces() provide additional insight into the structure of the eigenspaces.

EXAMPLES:

sage: P = graphs.PetersenGraph()
sage: P.eigenvectors()
[(3, [
(1, 1, 1, 1, 1, 1, 1, 1, 1, 1)
], 1), (-2, [
(1, 0, 0, 0, -1, -1, -1, 0, 1, 1),
(0, 1, 0, 0, -1, 0, -2, -1, 1, 2),
(0, 0, 1, 0, -1, 1, -1, -2, 0, 2),
(0, 0, 0, 1, -1, 1, 0, -1, -1, 1)
], 4), (1, [
(1, 0, 0, 0, 0, 1, -1, 0, 0, -1),
(0, 1, 0, 0, 0, -1, 1, -1, 0, 0),
(0, 0, 1, 0, 0, 0, -1, 1, -1, 0),
(0, 0, 0, 1, 0, 0, 0, -1, 1, -1),
(0, 0, 0, 0, 1, -1, 0, 0, -1, 1)
], 5)]

Eigenspaces for the Laplacian should be identical since the Petersen graph is regular. However, since the output also contains the eigenvalues, the two outputs are slightly different.

sage: P.eigenvectors(laplacian=True)
[(0, [
(1, 1, 1, 1, 1, 1, 1, 1, 1, 1)
], 1), (5, [
(1, 0, 0, 0, -1, -1, -1, 0, 1, 1),
(0, 1, 0, 0, -1, 0, -2, -1, 1, 2),
(0, 0, 1, 0, -1, 1, -1, -2, 0, 2),
(0, 0, 0, 1, -1, 1, 0, -1, -1, 1)
], 4), (2, [
(1, 0, 0, 0, 0, 1, -1, 0, 0, -1),
(0, 1, 0, 0, 0, -1, 1, -1, 0, 0),
(0, 0, 1, 0, 0, 0, -1, 1, -1, 0),
(0, 0, 0, 1, 0, 0, 0, -1, 1, -1),
(0, 0, 0, 0, 1, -1, 0, 0, -1, 1)
], 5)]
sage: C = graphs.CycleGraph(8)
sage: C.eigenvectors()
[(2, [
(1, 1, 1, 1, 1, 1, 1, 1)
], 1), (-2, [
(1, -1, 1, -1, 1, -1, 1, -1)
], 1), (0, [
(1, 0, -1, 0, 1, 0, -1, 0),
(0, 1, 0, -1, 0, 1, 0, -1)
], 2), (-1.4142135623..., [(1, 0, -1, 1.4142135623..., -1, 0, 1, -1.4142135623...), (0, 1, -1.4142135623..., 1, 0, -1, 1.4142135623..., -1)], 2), (1.4142135623..., [(1, 0, -1, -1.4142135623..., -1, 0, 1, 1.4142135623...), (0, 1, 1.4142135623..., 1, 0, -1, -1.4142135623..., -1)], 2)]

A digraph may have complex eigenvalues. Previously, the complex parts of graph eigenvalues were being dropped. For a 3-cycle, we have:

sage: T = DiGraph({0:[1], 1:[2], 2:[0]})
sage: T.eigenvectors()
[(1, [
(1, 1, 1)
], 1), (-0.5000000000... - 0.8660254037...*I, [(1, -0.5000000000... - 0.8660254037...*I, -0.5000000000... + 0.8660254037...*I)], 1), (-0.5000000000... + 0.8660254037...*I, [(1, -0.5000000000... + 0.8660254037...*I, -0.5000000000... - 0.8660254037...*I)], 1)]
eulerian_orientation()

Returns a DiGraph which is an eulerian orientation of the current graph.

An eulerian graph being a graph such that any vertex has an even degree, an eulerian orientation of a graph is an orientation of its edges such that each vertex v verifies d^+(v)=d^-(v)=d(v)/2, where d^+ and d^- respectively represent the out-degree and the in-degree of a vertex.

If the graph is not eulerian, the orientation verifies for any vertex v that | d^+(v)-d^-(v) | \leq 1.

ALGORITHM:

This algorithm is a random walk through the edges of the graph, which orients the edges according to the walk. When a vertex is reached which has no non-oriented edge ( this vertex must have odd degree ), the walk resumes at another vertex of odd degree, if any.

This algorithm has complexity O(m), where m is the number of edges in the graph.

EXAMPLES:

The CubeGraph with parameter 4, which is regular of even degree, has an eulerian orientation such that d^+=d^-:

sage: g=graphs.CubeGraph(4)
sage: g.degree()
[4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4]
sage: o=g.eulerian_orientation()
sage: o.in_degree()
[2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]
sage: o.out_degree()
[2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]

Secondly, the Petersen Graph, which is 3 regular has an orientation such that the difference between d^+ and d^- is at most 1:

sage: g=graphs.PetersenGraph()
sage: o=g.eulerian_orientation()
sage: o.in_degree()
[2, 2, 2, 2, 2, 1, 1, 1, 1, 1]
sage: o.out_degree()
[1, 1, 1, 1, 1, 2, 2, 2, 2, 2]
flow(x, y, value_only=True, integer=False, use_edge_labels=True, vertex_bound=False, solver=None, verbose=0)

Returns a maximum flow in the graph from x to y represented by an optimal valuation of the edges. For more information, see the Wikipedia article on maximum flow.

As an optimization problem, is can be expressed this way :

\mbox{Maximize : }&\sum_{e\in G.edges()} w_e b_e\\
\mbox{Such that : }&\forall v \in G, \sum_{(u,v)\in G.edges()} b_{(u,v)}\leq 1\\
&\forall x\in G, b_x\mbox{ is a binary variable}

INPUT:

  • x – Source vertex
  • y – Sink vertex
  • value_only – boolean (default: True)
    • When set to True, only the value of a maximal flow is returned.
    • When set to False, is returned a pair whose first element is the value of the maximum flow, and whose second value is a flow graph (a copy of the current graph, such that each edge has the flow using it as a label, the edges without flow being omitted).
  • integer – boolean (default: False)
    • When set to True, computes an optimal solution under the constraint that the flow going through an edge has to be an integer.
  • use_edge_labels – boolean (default: True)
    • When set to True, computes a maximum flow where each edge has a capacity defined by its label. (If an edge has no label, 1 is assumed.)
    • When set to False, each edge has capacity 1.
  • vertex_bound – boolean (default: False)
    • When set to True, sets the maximum flow leaving a vertex different from x to 1 (useful for vertex connectivity parameters).
  • solver – Specify a Linear Program solver to be used. If set to None, the default one is used. function of MixedIntegerLinearProgram. See the documentation of MixedIntegerLinearProgram.solve for more information.
  • verbose (integer) – sets the level of verbosity. Set to 0 by default (quiet).

EXAMPLES:

Two basic applications of the flow method for the PappusGraph and the ButterflyGraph with parameter 2

sage: g=graphs.PappusGraph()
sage: g.flow(1,2)
3.0
sage: b=digraphs.ButterflyGraph(2)
sage: b.flow(('00',1),('00',2))
1.0

The flow method can be used to compute a matching in a bipartite graph by linking a source s to all the vertices of the first set and linking a sink t to all the vertices of the second set, then computing a maximum s-t flow

sage: g = DiGraph()
sage: g.add_edges([('s',i) for i in range(4)]) 
sage: g.add_edges([(i,4+j) for i in range(4) for j in range(4)])
sage: g.add_edges([(4+i,'t') for i in range(4)])
sage: [cardinal, flow_graph] = g.flow('s','t',integer=True,value_only=False)
sage: flow_graph.delete_vertices(['s','t'])
sage: len(flow_graph.edges(labels=None))
4
genus(set_embedding=True, on_embedding=None, minimal=True, maximal=False, circular=False, ordered=True)

Returns the minimal genus of the graph. The genus of a compact surface is the number of handles it has. The genus of a graph is the minimal genus of the surface it can be embedded into.

Note - This function uses Euler’s formula and thus it is necessary to consider only connected graphs.

INPUT:

  • set_embedding (boolean) - whether or not to store an embedding attribute of the computed (minimal) genus of the graph. (Default is True).
  • on_embedding (dict) - a combinatorial embedding to compute the genus of the graph on. Note that this must be a valid embedding for the graph. The dictionary structure is given by: vertex1: [neighbor1, neighbor2, neighbor3], vertex2: [neighbor] where there is a key for each vertex in the graph and a (clockwise) ordered list of each vertex’s neighbors as values. on_embedding takes precedence over a stored _embedding attribute if minimal is set to False. Note that as a shortcut, the user can enter on_embedding=True to compute the genus on the current _embedding attribute. (see eg’s.)
  • minimal (boolean) - whether or not to compute the minimal genus of the graph (i.e., testing all embeddings). If minimal is False, then either maximal must be True or on_embedding must not be None. If on_embedding is not None, it will take priority over minimal. Similarly, if maximal is True, it will take priority over minimal.
  • maximal (boolean) - whether or not to compute the maximal genus of the graph (i.e., testing all embeddings). If maximal is False, then either minimal must be True or on_embedding must not be None. If on_embedding is not None, it will take priority over maximal. However, maximal takes priority over the default minimal.
  • circular (boolean) - whether or not to compute the genus preserving a planar embedding of the boundary. (Default is False). If circular is True, on_embedding is not a valid option.
  • ordered (boolean) - if circular is True, then whether or not the boundary order may be permuted. (Default is True, which means the boundary order is preserved.)

EXAMPLES:

sage: g = graphs.PetersenGraph()
sage: g.genus() # tests for minimal genus by default
1
sage: g.genus(on_embedding=True, maximal=True) # on_embedding overrides minimal and maximal arguments
1
sage: g.genus(maximal=True) # setting maximal to True overrides default minimal=True
3
sage: g.genus(on_embedding=g.get_embedding()) # can also send a valid combinatorial embedding dict
3
sage: (graphs.CubeGraph(3)).genus()
0
sage: K23 = graphs.CompleteBipartiteGraph(2,3)
sage: K23.genus()
0
sage: K33 = graphs.CompleteBipartiteGraph(3,3)
sage: K33.genus()
1

Using the circular argument, we can compute the minimal genus preserving a planar, ordered boundary:

sage: cube = graphs.CubeGraph(2)
sage: cube.set_boundary(['01','10'])
sage: cube.genus()
0
sage: cube.is_circular_planar()
True
sage: cube.genus(circular=True)
0
sage: cube.genus(circular=True, on_embedding=True)
0
sage: cube.genus(circular=True, maximal=True)
...
NotImplementedError: Cannot compute the maximal genus of a genus respecting a boundary.

Note: not everything works for multigraphs, looped graphs or digraphs. But the minimal genus is ultimately computable for every connected graph – but the embedding we obtain for the simple graph can’t be easily converted to an embedding of a non-simple graph. Also, the maximal genus of a multigraph does not trivially correspond to that of its simple graph.

sage: G = DiGraph({ 0 : [0,1,1,1], 1 : [2,2,3,3], 2 : [1,3,3], 3:[0,3]}) sage: G.genus() Traceback (most recent call last): ... NotImplementedError: Can’t work with embeddings of non-simple graphs sage: G.to_simple().genus() 0 sage: G.genus(set_embedding=False) 0 sage: G.genus(maximal=True, set_embedding=False) Traceback (most recent call last): ... NotImplementedError: Can’t compute the maximal genus of a graph with loops or multiple edges
get_boundary()

Returns the boundary of the (di)graph.

EXAMPLES:

sage: G = graphs.PetersenGraph()
sage: G.set_boundary([0,1,2,3,4])
sage: G.get_boundary()
[0, 1, 2, 3, 4]
get_embedding()

Returns the attribute _embedding if it exists. _embedding is a dictionary organized with vertex labels as keys and a list of each vertex’s neighbors in clockwise order.

Error-checked to insure valid embedding is returned.

EXAMPLES:

sage: G = graphs.PetersenGraph()
sage: G.genus()
1
sage: G.get_embedding()
{0: [1, 4, 5], 1: [0, 2, 6], 2: [1, 3, 7], 3: [2, 4, 8], 4: [0, 3, 9], 5: [0, 7, 8], 6: [1, 9, 8], 7: [2, 5, 9], 8: [3, 6, 5], 9: [4, 6, 7]}
get_pos(dim=2)

Returns the position dictionary, a dictionary specifying the coordinates of each vertex.

EXAMPLES: By default, the position of a graph is None:

sage: G = Graph()
sage: G.get_pos()
sage: G.get_pos() is None
True
sage: P = G.plot(save_pos=True)
sage: G.get_pos()
{}

Some of the named graphs come with a pre-specified positioning:

sage: G = graphs.PetersenGraph()
sage: G.get_pos()        
{0: (..., ...),
 ...
 9: (..., ...)}
get_vertex(vertex)

Retrieve the object associated with a given vertex.

INPUT:

  • vertex - the given vertex

EXAMPLES:

sage: d = {0 : graphs.DodecahedralGraph(), 1 : graphs.FlowerSnark(), 2 : graphs.MoebiusKantorGraph(), 3 : graphs.PetersenGraph() }
sage: d[2]
Moebius-Kantor Graph: Graph on 16 vertices
sage: T = graphs.TetrahedralGraph()
sage: T.vertices()
[0, 1, 2, 3]
sage: T.set_vertices(d)
sage: T.get_vertex(1)
Flower Snark: Graph on 20 vertices
get_vertices(verts=None)

Return a dictionary of the objects associated to each vertex.

INPUT:

  • verts - iterable container of vertices

EXAMPLES:

sage: d = {0 : graphs.DodecahedralGraph(), 1 : graphs.FlowerSnark(), 2 : graphs.MoebiusKantorGraph(), 3 : graphs.PetersenGraph() }
sage: T = graphs.TetrahedralGraph()
sage: T.set_vertices(d)
sage: T.get_vertices([1,2])
{1: Flower Snark: Graph on 20 vertices,
 2: Moebius-Kantor Graph: Graph on 16 vertices}
girth()

Computes the girth of the graph. For directed graphs, computes the girth of the undirected graph.

The girth is the length of the shortest cycle in the graph. Graphs without cycles have infinite girth.

EXAMPLES:

sage: graphs.TetrahedralGraph().girth()
3
sage: graphs.CubeGraph(3).girth()
4
sage: graphs.PetersenGraph().girth()
5
sage: graphs.HeawoodGraph().girth()
6
sage: graphs.trees(9).next().girth()
+Infinity
graphplot(*args, **kwds)

Returns a GraphPlot object.

EXAMPLES:

Creating a graphplot object uses the same options as graph.plot():

sage: g = Graph({}, loops=True, multiedges=True, sparse=True)
sage: g.add_edges([(0,0,'a'),(0,0,'b'),(0,1,'c'),(0,1,'d'),
...     (0,1,'e'),(0,1,'f'),(0,1,'f'),(2,1,'g'),(2,2,'h')])
sage: g.set_boundary([0,1])
sage: GP = g.graphplot(edge_labels=True, color_by_label=True, edge_style='dashed')
sage: GP.plot()

We can modify the graphplot object. Notice that the changes are cumulative:

sage: GP.set_edges(edge_style='solid')
sage: GP.plot()
sage: GP.set_vertices(talk=True)
sage: GP.plot()
graphviz_string(*args, **kwds)

Returns a representation in the dot language.

The dot language is a text based format for graphs. It is used by the software suite graphviz. The specifications of the language are available on the web (see the reference [dotspec]).

INPUT:

  • labels - “string” or “latex” (default: “string”). If labels is string latex command are not interpreted. This option stands for both vertex labels and edge labels.
  • vertex_labels - boolean (default: True) whether to add the labels on vertices.
  • edge_labels - boolean (default: False) whether to add the labels on edges.
  • edge_color - (default: None) specify a default color for the edges.
  • edge_colors - (default: None) a dictionary which keys are colors and values are list of edges. The list of edges need not to be complete in which case the default color is used.
  • color_by_label - boolean (default: False): whether to color each edge with a different color according to its label. This overwrites the options edge_color and edge_colors.

EXAMPLES:

sage: G = Graph({0:{1:None,2:None}, 1:{0:None,2:None}, 2:{0:None,1:None,3:'foo'}, 3:{2:'foo'}},sparse=True)
sage: print G.graphviz_string(edge_labels=True)
graph {
  "0" [label="0"];
  "1" [label="1"];
  "2" [label="2"];
  "3" [label="3"];
<BLANKLINE>
  "0" -- "1";
  "0" -- "2";
  "1" -- "2";
  "2" -- "3" [label="foo"];
}

A variant, with the labels in latex, for post-processing with dot2tex:

sage: print G.graphviz_string(edge_labels=True,labels = "latex")
graph {
  node [shape="plaintext"];
  "0" [label=" ", texlbl="$0$"];
  "1" [label=" ", texlbl="$1$"];
  "2" [label=" ", texlbl="$2$"];
  "3" [label=" ", texlbl="$3$"];
<BLANKLINE>
  "0" -- "1";
  "0" -- "2";
  "1" -- "2";
  "2" -- "3" [label=" ", texlbl="$\texttt{foo}$"];
}

Same, with a digraph and a color for edges:

sage: G = DiGraph({0:{1:None,2:None}, 1:{2:None}, 2:{3:'foo'}, 3:{}} ,sparse=True)
sage: print G.graphviz_string(edge_color="red")
digraph {
  "0" [label="0"];
  "1" [label="1"];
  "2" [label="2"];
  "3" [label="3"];
<BLANKLINE>
  edge [color="red"];
  "0" -> "1";
  "0" -> "2";
  "1" -> "2";
  "2" -> "3";
}

A digraph using latex labels for vertices and edges:

sage: f(x) = -1/x
sage: g(x) = 1/(x+1)
sage: G = DiGraph()
sage: G.add_edges([(i,f(i),f) for i in (1,2,1/2,1/4)])
sage: G.add_edges([(i,g(i),g) for i in (1,2,1/2,1/4)])
sage: print G.graphviz_string(labels="latex",edge_labels=True)
digraph {
  node [shape="plaintext"];
  "2/3" [label=" ", texlbl="$\frac{2}{3}$"];
  "1/3" [label=" ", texlbl="$\frac{1}{3}$"];
  "1/2" [label=" ", texlbl="$\frac{1}{2}$"];
  "1" [label=" ", texlbl="$1$"];
  "1/4" [label=" ", texlbl="$\frac{1}{4}$"];
  "4/5" [label=" ", texlbl="$\frac{4}{5}$"];
  "-4" [label=" ", texlbl="$-4$"];
  "2" [label=" ", texlbl="$2$"];
  "-2" [label=" ", texlbl="$-2$"];
  "-1/2" [label=" ", texlbl="$-\frac{1}{2}$"];
  "-1" [label=" ", texlbl="$-1$"];
<BLANKLINE>
  "1/2" -> "-2" [label=" ", texlbl="$x \ {\mapsto}\ \frac{-1}{x}$"];
  "1/2" -> "2/3" [label=" ", texlbl="$x \ {\mapsto}\ \frac{1}{x + 1}$"];
  "1" -> "-1" [label=" ", texlbl="$x \ {\mapsto}\ \frac{-1}{x}$"];
  "1" -> "1/2" [label=" ", texlbl="$x \ {\mapsto}\ \frac{1}{x + 1}$"];
  "1/4" -> "-4" [label=" ", texlbl="$x \ {\mapsto}\ \frac{-1}{x}$"];
  "1/4" -> "4/5" [label=" ", texlbl="$x \ {\mapsto}\ \frac{1}{x + 1}$"];
  "2" -> "-1/2" [label=" ", texlbl="$x \ {\mapsto}\ \frac{-1}{x}$"];
  "2" -> "1/3" [label=" ", texlbl="$x \ {\mapsto}\ \frac{1}{x + 1}$"];
}

TESTS:

The following digraph has tuples as vertices:

sage: print digraphs.ButterflyGraph(1).graphviz_string()
digraph {
  "1,1" [label="('1', 1)"];
  "0,0" [label="('0', 0)"];
  "1,0" [label="('1', 0)"];
  "0,1" [label="('0', 1)"];
<BLANKLINE>
  "0,0" -> "1,1";
  "0,0" -> "0,1";
  "1,0" -> "1,1";
  "1,0" -> "0,1";
}

The following digraph has vertices with newlines in their string representations:

sage: m1 = matrix(3,3)
sage: m2 = matrix(3,3, 1)
sage: m1.set_immutable()
sage: m2.set_immutable()
sage: g = DiGraph({ m1: [m2] })
sage: print g.graphviz_string()
digraph {
  "000000000" [label="[0 0 0]\n\
  [0 0 0]\n\
  [0 0 0]"];
  "100010001" [label="[1 0 0]\n\
  [0 1 0]\n\
  [0 0 1]"];
<BLANKLINE>
  "000000000" -> "100010001";
}

REFERENCES:

[dotspec]http://www.graphviz.org/doc/info/lang.html
graphviz_to_file_named(filename, **options)

Write a representation in the dot in a file.

The dot language is a plaintext format for graph structures. See the documentation of graphviz_string() for available options.

INPUT:

filename - the name of the file to write in

options - options for the graphviz string

EXAMPLES:

sage: G = Graph({0:{1:None,2:None}, 1:{0:None,2:None}, 2:{0:None,1:None,3:'foo'}, 3:{2:'foo'}},sparse=True)
sage: G.graphviz_to_file_named(os.environ['SAGE_TESTDIR']+'/temp_graphviz',edge_labels=True)
sage: print open(os.environ['SAGE_TESTDIR']+'/temp_graphviz').read()
graph {
  "0" [label="0"];
  "1" [label="1"];
  "2" [label="2"];
  "3" [label="3"];
<BLANKLINE>
  "0" -- "1";
  "0" -- "2";
  "1" -- "2";
  "2" -- "3" [label="foo"];
}
hamiltonian_cycle()

Returns a hamiltonian cycle/circuit of the current graph/digraph

A graph (resp. digraph) is said to be hamiltonian if it contains as a subgraph a cycle (resp. a circuit) going through all the vertices.

Computing a hamiltonian cycle/circuit being NP-Complete, this algorithm could run for some time depending on the instance.

ALGORITHM:

See Graph.traveling_salesman_problem.

OUTPUT:

Returns a hamiltonian cycle/circuit if it exists. Otherwise, raises a ValueError exception.

NOTE:

This function, as is_hamiltonian, computes a hamiltonian cycle if it exists : the user should NOT test for hamiltonicity using is_hamiltonian before calling this function, as it would result in computing it twice.

EXAMPLES:

The Heawood Graph is known to be hamiltonian

sage: g = graphs.HeawoodGraph()
sage: g.hamiltonian_cycle()
TSP from Heawood graph: Graph on 14 vertices

The Petergraph, though, is not

sage: g = graphs.PetersenGraph()
sage: g.hamiltonian_cycle()
...
ValueError: The given graph is not hamiltonian
has_edge(u, v=None, label=None)

Returns True if (u, v) is an edge, False otherwise.

INPUT: The following forms are accepted by NetworkX:

  • G.has_edge( 1, 2 )
  • G.has_edge( (1, 2) )
  • G.has_edge( 1, 2, ‘label’ )

EXAMPLES:

sage: graphs.EmptyGraph().has_edge(9,2)
False
sage: DiGraph().has_edge(9,2)
False
sage: G = Graph(sparse=True)
sage: G.add_edge(0,1,"label")
sage: G.has_edge(0,1,"different label")
False
sage: G.has_edge(0,1,"label")
True
has_loops()

Returns whether there are loops in the (di)graph.

EXAMPLES:

sage: G = Graph(loops=True); G
Looped graph on 0 vertices
sage: G.has_loops()
False
sage: G.allows_loops()
True
sage: G.add_edge((0,0))
sage: G.has_loops()
True
sage: G.loops()
[(0, 0, None)]
sage: G.allow_loops(False); G
Graph on 1 vertex
sage: G.has_loops()
False
sage: G.edges()
[]

sage: D = DiGraph(loops=True); D
Looped digraph on 0 vertices
sage: D.has_loops()
False
sage: D.allows_loops()
True
sage: D.add_edge((0,0))
sage: D.has_loops()
True
sage: D.loops()
[(0, 0, None)]
sage: D.allow_loops(False); D
Digraph on 1 vertex
sage: D.has_loops()
False
sage: D.edges()
[]
has_multiple_edges(to_undirected=False)

Returns whether there are multiple edges in the (di)graph.

INPUT:

  • to_undirected – (default: False) If True, runs the test on the undirected version of a DiGraph. Otherwise, treats DiGraph edges (u,v) and (v,u) as unique individual edges.

EXAMPLES:

sage: G = Graph(multiedges=True,sparse=True); G
Multi-graph on 0 vertices
sage: G.has_multiple_edges()
False
sage: G.allows_multiple_edges()
True
sage: G.add_edges([(0,1)]*3)
sage: G.has_multiple_edges()
True
sage: G.multiple_edges()
[(0, 1, None), (0, 1, None), (0, 1, None)]
sage: G.allow_multiple_edges(False); G
Graph on 2 vertices
sage: G.has_multiple_edges()
False
sage: G.edges()
[(0, 1, None)]

sage: D = DiGraph(multiedges=True,sparse=True); D
Multi-digraph on 0 vertices
sage: D.has_multiple_edges()
False
sage: D.allows_multiple_edges()
True
sage: D.add_edges([(0,1)]*3)
sage: D.has_multiple_edges()
True
sage: D.multiple_edges()
[(0, 1, None), (0, 1, None), (0, 1, None)]
sage: D.allow_multiple_edges(False); D
Digraph on 2 vertices
sage: D.has_multiple_edges()
False
sage: D.edges()
[(0, 1, None)]

sage: G = DiGraph({1:{2: 'h'}, 2:{1:'g'}},sparse=True)
sage: G.has_multiple_edges()
False
sage: G.has_multiple_edges(to_undirected=True)
True
sage: G.multiple_edges()
[]
sage: G.multiple_edges(to_undirected=True)
[(1, 2, 'h'), (2, 1, 'g')]
has_vertex(vertex)

Return True if vertex is one of the vertices of this graph.

INPUT:

  • vertex - an integer

OUTPUT:

  • bool - True or False

EXAMPLES:

sage: g = Graph({0:[1,2,3], 2:[4]}); g
Graph on 5 vertices
sage: 2 in g
True
sage: 10 in g
False
sage: graphs.PetersenGraph().has_vertex(99)
False
incidence_matrix(sparse=True)

Returns an incidence matrix of the (di)graph. Each row is a vertex, and each column is an edge. Note that in the case of graphs, there is a choice of orientation for each edge.

EXAMPLES:

sage: G = graphs.CubeGraph(3)
sage: G.incidence_matrix()
[-1 -1 -1  0  0  0  0  0  0  0  0  0]
[ 0  0  1 -1 -1  0  0  0  0  0  0  0]
[ 0  1  0  0  0 -1 -1  0  0  0  0  0]
[ 0  0  0  0  1  0  1 -1  0  0  0  0]
[ 1  0  0  0  0  0  0  0 -1 -1  0  0]
[ 0  0  0  1  0  0  0  0  0  1 -1  0]
[ 0  0  0  0  0  1  0  0  1  0  0 -1]
[ 0  0  0  0  0  0  0  1  0  0  1  1]
sage: D = DiGraph( { 0: [1,2,3], 1: [0,2], 2: [3], 3: [4], 4: [0,5], 5: [1] } )
sage: D.incidence_matrix()
[-1 -1 -1  0  0  0  0  0  1  1]
[ 0  0  1 -1  0  0  0  1 -1  0]
[ 0  1  0  1 -1  0  0  0  0  0]
[ 1  0  0  0  1 -1  0  0  0  0]
[ 0  0  0  0  0  1 -1  0  0 -1]
[ 0  0  0  0  0  0  1 -1  0  0]
interior_paths(start, end)

Returns an exhaustive list of paths (also lists) through only interior vertices from vertex start to vertex end in the (di)graph.

Note - start and end do not necessarily have to be boundary vertices.

INPUT:

  • start - the vertex of the graph to search for paths from
  • end - the vertex of the graph to search for paths to

EXAMPLES:

sage: eg1 = Graph({0:[1,2], 1:[4], 2:[3,4], 4:[5], 5:[6]})
sage: sorted(eg1.all_paths(0,6))
[[0, 1, 4, 5, 6], [0, 2, 4, 5, 6]]
sage: eg2 = copy(eg1)
sage: eg2.set_boundary([0,1,3])
sage: sorted(eg2.interior_paths(0,6))
[[0, 2, 4, 5, 6]]
sage: sorted(eg2.all_paths(0,6))
[[0, 1, 4, 5, 6], [0, 2, 4, 5, 6]]
sage: eg3 = graphs.PetersenGraph()
sage: eg3.set_boundary([0,1,2,3,4])
sage: sorted(eg3.all_paths(1,4))
[[1, 0, 4],
 [1, 0, 5, 7, 2, 3, 4],
 [1, 0, 5, 7, 2, 3, 8, 6, 9, 4],
 [1, 0, 5, 7, 9, 4],
 [1, 0, 5, 7, 9, 6, 8, 3, 4],
 [1, 0, 5, 8, 3, 2, 7, 9, 4],
 [1, 0, 5, 8, 3, 4],
 [1, 0, 5, 8, 6, 9, 4],
 [1, 0, 5, 8, 6, 9, 7, 2, 3, 4],
 [1, 2, 3, 4],
 [1, 2, 3, 8, 5, 0, 4],
 [1, 2, 3, 8, 5, 7, 9, 4],
 [1, 2, 3, 8, 6, 9, 4],
 [1, 2, 3, 8, 6, 9, 7, 5, 0, 4],
 [1, 2, 7, 5, 0, 4],
 [1, 2, 7, 5, 8, 3, 4],
 [1, 2, 7, 5, 8, 6, 9, 4],
 [1, 2, 7, 9, 4],
 [1, 2, 7, 9, 6, 8, 3, 4],
 [1, 2, 7, 9, 6, 8, 5, 0, 4],
 [1, 6, 8, 3, 2, 7, 5, 0, 4],
 [1, 6, 8, 3, 2, 7, 9, 4],
 [1, 6, 8, 3, 4],
 [1, 6, 8, 5, 0, 4],
 [1, 6, 8, 5, 7, 2, 3, 4],
 [1, 6, 8, 5, 7, 9, 4],
 [1, 6, 9, 4],
 [1, 6, 9, 7, 2, 3, 4],
 [1, 6, 9, 7, 2, 3, 8, 5, 0, 4],
 [1, 6, 9, 7, 5, 0, 4],
 [1, 6, 9, 7, 5, 8, 3, 4]]
sage: sorted(eg3.interior_paths(1,4))
[[1, 6, 8, 5, 7, 9, 4], [1, 6, 9, 4]]
sage: dg = DiGraph({0:[1,3,4], 1:[3], 2:[0,3,4],4:[3]}, boundary=[4])
sage: sorted(dg.all_paths(0,3))
[[0, 1, 3], [0, 3], [0, 4, 3]]
sage: sorted(dg.interior_paths(0,3))
[[0, 1, 3], [0, 3]]
sage: ug = dg.to_undirected()
sage: sorted(ug.all_paths(0,3))
[[0, 1, 3], [0, 2, 3], [0, 2, 4, 3], [0, 3], [0, 4, 2, 3], [0, 4, 3]]
sage: sorted(ug.interior_paths(0,3))
[[0, 1, 3], [0, 2, 3], [0, 3]]
is_chordal()

Tests whether the given graph is chordal.

A Graph G is said to be chordal if it contains no induced hole. Being chordal is equivalent to having an elimination order on the vertices such that the neighborhood of each vertex, before being removed from the graph, is a complete graph [Fulkerson65].

Such an ordering is called a Perfect Elimination Order.

ALGORITHM:

This algorithm works through computing a Lex BFS on the graph, then checking whether the order is a Perfect Elimination Order by computing for each vertex v the subgraph induces by its non-deleted neighbors, then testing whether this graph is complete.

This problem can be solved in O(m) [Rose75] ( where m is the number of edges in the graph ) but this implementation is not linear because of the complexity of Lex BFS. Improving Lex BFS to linear complexity would make this algorithm linear.

The complexity of this algorithm is equal to the complexity of the implementation of Lex BFS.

EXAMPLES:

The lexicographic product of a Path and a Complete Graph is chordal

sage: g = graphs.PathGraph(5).lexicographic_product(graphs.CompleteGraph(3))
sage: g.is_chordal()
True

The same goes with the product of a random lobster ( which is a tree ) and a Complete Graph

sage: g = graphs.RandomLobster(10,.5,.5).lexicographic_product(graphs.CompleteGraph(3))
sage: g.is_chordal()
True

The disjoint union of chordal graphs is still chordal:

sage: (2*g).is_chordal()
True

Of course, the Petersen Graph is not chordal as it has girth 5

sage: g = graphs.PetersenGraph()
sage: g.girth()
5
sage: g.is_chordal()
False

REFERENCES:

[Rose75]Rose, D.J. and Tarjan, R.E., Algorithmic aspects of vertex elimination, Proceedings of seventh annual ACM symposium on Theory of computing Page 254, ACM 1975
[Fulkerson65]Fulkerson, D.R. and Gross, OA Incidence matrices and interval graphs Pacific J. Math 1965 Vol. 15, number 3, pages 835–855
is_circular_planar(ordered=True, on_embedding=None, kuratowski=False, set_embedding=False, set_pos=False)

A graph (with nonempty boundary) is circular planar if it has a planar embedding in which all boundary vertices can be drawn in order on a disc boundary, with all the interior vertices drawn inside the disc.

Returns True if the graph is circular planar, and False if it is not. If kuratowski is set to True, then this function will return a tuple, with boolean first entry and second entry the Kuratowski subgraph or minor isolated by the Boyer-Myrvold algorithm. Note that this graph might contain a vertex or edges that were not in the initial graph. These would be elements referred to below as parts of the wheel and the star, which were added to the graph to require that the boundary can be drawn on the boundary of a disc, with all other vertices drawn inside (and no edge crossings). For more information, refer to reference [2].

This is a linear time algorithm to test for circular planarity. It relies on the edge-addition planarity algorithm due to Boyer-Myrvold. We accomplish linear time for circular planarity by modifying the graph before running the general planarity algorithm.

REFERENCE:

  • [1] John M. Boyer and Wendy J. Myrvold, On the Cutting Edge: Simplified O(n) Planarity by Edge Addition. Journal of Graph Algorithms and Applications, Vol. 8, No. 3, pp. 241-273, 2004.
  • [2] Kirkman, Emily A. O(n) Circular Planarity Testing. [Online] Available: soon!

INPUT:

  • ordered - whether or not to consider the order of the boundary (set ordered=False to see if there is any possible boundary order that will satisfy circular planarity)
  • kuratowski - if set to True, returns a tuple with boolean first entry and the Kuratowski subgraph or minor as the second entry. See notes above.
  • on_embedding - the embedding dictionary to test planarity on. (i.e.: will return True or False only for the given embedding.)
  • set_embedding - whether or not to set the instance field variable that contains a combinatorial embedding (clockwise ordering of neighbors at each vertex). This value will only be set if a circular planar embedding is found. It is stored as a Python dict: v1: [n1,n2,n3] where v1 is a vertex and n1,n2,n3 are its neighbors.
  • set_pos - whether or not to set the position dictionary (for plotting) to reflect the combinatorial embedding. Note that this value will default to False if set_emb is set to False. Also, the position dictionary will only be updated if a circular planar embedding is found.

EXAMPLES:

sage: g439 = Graph({1:[5,7], 2:[5,6], 3:[6,7], 4:[5,6,7]})
sage: g439.set_boundary([1,2,3,4])
sage: g439.show(figsize=[2,2], vertex_labels=True, vertex_size=175)
sage: g439.is_circular_planar()
False
sage: g439.is_circular_planar(kuratowski=True)
(False, Graph on 7 vertices)
sage: g439.set_boundary([1,2,3])
sage: g439.is_circular_planar(set_embedding=True, set_pos=False)
True
sage: g439.is_circular_planar(kuratowski=True)
(True, None)
sage: g439.get_embedding()
{1: [7, 5],
 2: [5, 6],
 3: [6, 7],
 4: [7, 6, 5],
 5: [4, 2, 1],
 6: [4, 3, 2],
 7: [3, 4, 1]}

Order matters:

sage: K23 = graphs.CompleteBipartiteGraph(2,3)
sage: K23.set_boundary([0,1,2,3])
sage: K23.is_circular_planar()
False
sage: K23.is_circular_planar(ordered=False)
True
sage: K23.set_boundary([0,2,1,3]) # Diff Order!
sage: K23.is_circular_planar(set_embedding=True)
True

For graphs without a boundary, circular planar is the same as planar:

sage: g = graphs.KrackhardtKiteGraph()
sage: g.is_circular_planar()
True
is_clique(vertices=None, directed_clique=False)

Returns True if the set vertices is a clique, False if not. A clique is a set of vertices such that there is an edge between any two vertices.

INPUT:

  • vertices - Vertices can be a single vertex or an iterable container of vertices, e.g. a list, set, graph, file or numeric array. If not passed, defaults to the entire graph.
  • directed_clique - (default False) If set to False, only consider the underlying undirected graph. If set to True and the graph is directed, only return True if all possible edges in _both_ directions exist.

EXAMPLES:

sage: g = graphs.CompleteGraph(4)
sage: g.is_clique([1,2,3])
True
sage: g.is_clique()
True
sage: h = graphs.CycleGraph(4)
sage: h.is_clique([1,2])
True
sage: h.is_clique([1,2,3])
False
sage: h.is_clique()
False
sage: i = graphs.CompleteGraph(4).to_directed()
sage: i.delete_edge([0,1])
sage: i.is_clique()
True
sage: i.is_clique(directed_clique=True)
False
is_connected()

Indicates whether the (di)graph is connected. Note that in a graph, path connected is equivalent to connected.

EXAMPLES:

sage: G = Graph( { 0 : [1, 2], 1 : [2], 3 : [4, 5], 4 : [5] } )
sage: G.is_connected()
False
sage: G.add_edge(0,3)
sage: G.is_connected()
True
sage: D = DiGraph( { 0 : [1, 2], 1 : [2], 3 : [4, 5], 4 : [5] } )
sage: D.is_connected()
False
sage: D.add_edge(0,3)
sage: D.is_connected()
True
sage: D = DiGraph({1:[0], 2:[0]})
sage: D.is_connected()
True
is_drawn_free_of_edge_crossings()

Returns True is the position dictionary for this graph is set and that position dictionary gives a planar embedding.

This simply checks all pairs of edges that don’t share a vertex to make sure that they don’t intersect.

Note

This function require that _pos attribute is set. (Returns False otherwise.)

EXAMPLES:

sage: D = graphs.DodecahedralGraph()
sage: D.set_planar_positions()
sage: D.is_drawn_free_of_edge_crossings()
True
is_equitable(partition, quotient_matrix=False)

Checks whether the given partition is equitable with respect to self.

A partition is equitable with respect to a graph if for every pair of cells C1, C2 of the partition, the number of edges from a vertex of C1 to C2 is the same, over all vertices in C1.

INPUT:

  • partition - a list of lists
  • quotient_matrix - (default False) if True, and the partition is equitable, returns a matrix over the integers whose rows and columns represent cells of the partition, and whose i,j entry is the number of vertices in cell j adjacent to each vertex in cell i (since the partition is equitable, this is well defined)

EXAMPLES:

sage: G = graphs.PetersenGraph()
sage: G.is_equitable([[0,4],[1,3,5,9],[2,6,8],[7]])
False
sage: G.is_equitable([[0,4],[1,3,5,9],[2,6,8,7]])
True
sage: G.is_equitable([[0,4],[1,3,5,9],[2,6,8,7]], quotient_matrix=True)
[1 2 0]
[1 0 2]
[0 2 1]
sage: ss = (graphs.WheelGraph(6)).line_graph(labels=False)
sage: prt = [[(0, 1)], [(0, 2), (0, 3), (0, 4), (1, 2), (1, 4)], [(2, 3), (3, 4)]]
sage: ss.is_equitable(prt)
...
TypeError: Partition ([[(0, 1)], [(0, 2), (0, 3), (0, 4), (1, 2), (1, 4)], [(2, 3), (3, 4)]]) is not valid for this graph: vertices are incorrect.
sage: ss = (graphs.WheelGraph(5)).line_graph(labels=False)
sage: ss.is_equitable(prt)
False
is_eulerian()

Return true if the graph has an tour that visits each edge exactly once.

EXAMPLES:

sage: graphs.CompleteGraph(4).is_eulerian()
False
sage: graphs.CycleGraph(4).is_eulerian()
True
sage: g = DiGraph({0:[1,2], 1:[2]}); g.is_eulerian()
False
sage: g = DiGraph({0:[2], 1:[3], 2:[0,1], 3:[2]}); g.is_eulerian()
True
is_forest()

Return True if the graph is a forest, i.e. a disjoint union of trees.

EXAMPLES:

sage: seven_acre_wood = sum(graphs.trees(7), Graph())
sage: seven_acre_wood.is_forest()
True
is_gallai_tree()

Returns whether the current graph is a Gallai tree.

A graph is a Gallai tree if and only if it is connected and its 2-connected components are all isomorphic to complete graphs or odd cycles.

A connected graph is not degree-choosable if and only if it is a Gallai tree [erdos1978choos].

REFERENCES:

[erdos1978choos]Erdos, P. and Rubin, A.L. and Taylor, H. Proc. West Coast Conf. on Combinatorics Graph Theory and Computing, Congressus Numerantium vol 26, pages 125–157, 1979

EXAMPLES:

A complete graph is, or course, a Gallai Tree:

sage: g = graphs.CompleteGraph(15)
sage: g.is_gallai_tree()
True

The Petersen Graph is not:

sage: g = graphs.PetersenGraph()
sage: g.is_gallai_tree()
False

A Graph built from vertex-disjoint complete graphs linked by one edge to a special vertex -1 is a ‘’star-shaped’’ Gallai tree

sage: g = 8 * graphs.CompleteGraph(6)
sage: g.add_edges([(-1,c[0]) for c in g.connected_components()])
sage: g.is_gallai_tree()
True
is_hamiltonian()

Tests whether the current graph is Hamiltonian

A graph (resp. digraph) is said to be hamiltonian if it contains as a subgraph a cycle (resp. a circuit) going through all the vertices.

Testing for hamiltonicity being NP-Complete, this algorithm could run for some time depending on the instance.

ALGORITHM:

See Graph.traveling_salesman_problem.

OUTPUT:

Returns True if a hamiltonian cycle/circuit exists, and False otherwise.

NOTE:

This function, as hamiltonian_cycle and traveling_salesman_problem, computes a hamiltonian cycle if it exists : the user should NOT test for hamiltonicity using is_hamiltonian before calling hamiltonian_cycle or traveling_salesman_problem as it would result in computing it twice.

EXAMPLES:

The Heawood Graph is known to be hamiltonian

sage: g = graphs.HeawoodGraph()
sage: g.is_hamiltonian()
True

The Petergraph, though, is not

sage: g = graphs.PetersenGraph()
sage: g.is_hamiltonian()
False

TESTS:

When no solver is installed, a OptionalPackageNotFoundError exception is raised:

sage: from sage.misc.exceptions import OptionalPackageNotFoundError
sage: try:
...       g = graphs.ChvatalGraph()
...       if not g.is_hamiltonian():
...          print "There is something wrong here !"
... except OptionalPackageNotFoundError:
...       pass
is_independent_set(vertices=None)

Returns True if the set vertices is an independent set, False if not. An independent set is a set of vertices such that there is no edge between any two vertices.

INPUT:

  • vertices - Vertices can be a single vertex or an iterable container of vertices, e.g. a list, set, graph, file or numeric array. If not passed, defaults to the entire graph.

EXAMPLES:

sage: graphs.CycleGraph(4).is_independent_set([1,3])
True
sage: graphs.CycleGraph(4).is_independent_set([1,2,3])
False
is_interval(certificate=False)

Check whether self is an interval graph

INPUT:

  • certificate (boolean) – The function returns True or False according to the graph, when certificate = False (default). When certificate = True and the graph is an interval graph, a dictionary whose keys are the vertices and values are pairs of integers are returned instead of True. They correspond to an embedding of the interval graph, each vertex being represented by an interval going from the first of the two values to the second.

ALGORITHM:

Through the use of PQ-Trees

AUTHOR :

Nathann Cohen (implementation)

EXAMPLES:

A Petersen Graph is not chordal, nor car it be an interval graph

sage: g = graphs.PetersenGraph()
sage: g.is_interval()
False

Though we can build intervals from the corresponding random generator:

sage: g = graphs.RandomInterval(20)
sage: g.is_interval()
True

This method can also return, given an interval graph, a possible embedding (we can actually compute all of them through the PQ-Tree structures):

sage: g = Graph(':S__@_@A_@AB_@AC_@ACD_@ACDE_ACDEF_ACDEFG_ACDEGH_ACDEGHI_ACDEGHIJ_ACDEGIJK_ACDEGIJKL_ACDEGIJKLMaCEGIJKNaCEGIJKNaCGIJKNPaCIP')
sage: d = g.is_interval(certificate = True)
sage: print d                                    # not tested
{0: (0, 20), 1: (1, 9), 2: (2, 36), 3: (3, 5), 4: (4, 38), 5: (6, 21), 6: (7, 27), 7: (8, 12), 8: (10, 29), 9: (11, 16), 10: (13, 39), 11: (14, 31), 12: (15, 32), 13: (17, 23), 14: (18, 22), 15: (19, 33), 16: (24, 25), 17: (26, 35), 18: (28, 30), 19: (34, 37)}

From this embedding, we can clearly build an interval graph isomorphic to the previous one:

sage: g2 = graphs.IntervalGraph(d.values())
sage: g2.is_isomorphic(g)
True

See also

is_isomorphic(other, certify=False, verbosity=0, edge_labels=False)

Tests for isomorphism between self and other.

INPUT:

  • certify - if True, then output is (a,b), where a is a boolean and b is either a map or None.
  • edge_labels - default False, otherwise allows only permutations respecting edge labels.

EXAMPLES: Graphs:

sage: from sage.groups.perm_gps.permgroup_named import SymmetricGroup
sage: D = graphs.DodecahedralGraph()
sage: E = copy(D)
sage: gamma = SymmetricGroup(20).random_element()
sage: E.relabel(gamma)
sage: D.is_isomorphic(E)
True
sage: D = graphs.DodecahedralGraph()
sage: S = SymmetricGroup(20)
sage: gamma = S.random_element()
sage: E = copy(D)
sage: E.relabel(gamma)
sage: a,b = D.is_isomorphic(E, certify=True); a
True
sage: from sage.plot.plot import GraphicsArray
sage: from sage.graphs.generic_graph_pyx import spring_layout_fast
sage: position_D = spring_layout_fast(D)
sage: position_E = {}
sage: for vert in position_D:
...    position_E[b[vert]] = position_D[vert]
sage: GraphicsArray([D.plot(pos=position_D), E.plot(pos=position_E)]).show() # long time
sage: g=graphs.HeawoodGraph()
sage: g.is_isomorphic(g)
True

Multigraphs:

sage: G = Graph(multiedges=True,sparse=True)
sage: G.add_edge((0,1,1))
sage: G.add_edge((0,1,2))
sage: G.add_edge((0,1,3))
sage: G.add_edge((0,1,4))
sage: H = Graph(multiedges=True,sparse=True)
sage: H.add_edge((3,4))
sage: H.add_edge((3,4))
sage: H.add_edge((3,4))
sage: H.add_edge((3,4))
sage: G.is_isomorphic(H)
True

Digraphs:

sage: A = DiGraph( { 0 : [1,2] } )
sage: B = DiGraph( { 1 : [0,2] } )
sage: A.is_isomorphic(B, certify=True)
(True, {0: 1, 1: 0, 2: 2})

Edge labeled graphs:

sage: G = Graph(sparse=True)
sage: G.add_edges( [(0,1,'a'),(1,2,'b'),(2,3,'c'),(3,4,'b'),(4,0,'a')] )
sage: H = G.relabel([1,2,3,4,0], inplace=False)
sage: G.is_isomorphic(H, edge_labels=True)
True

TESTS:

sage: g1 = '~?A[~~{ACbCwV_~__OOcCW_fAA{CF{CCAAAC__bCCCwOOV___~____OOOOcCCCW___fAAAA'+            ...   '{CCCF{CCCCAAAAAC____bCCCCCwOOOOV_____~_O@ACG_@ACGOo@ACG?{?`A?GV_GO@AC}@?_OGC'+            ...   'C?_OI@?K?I@?_OM?_OGD?F_A@OGC@{A@?_OG?O@?gCA?@_GCA@O?B_@OGCA?BoA@?gC?@{A?GO`?'+            ...   '??_GO@AC??E?O`?CG??[?O`A?G??{?GO`A???|A?_GOC`AC@_OCGACEAGS?HA?_SA`aO@G?cOC_N'+            ...   'G_C@AOP?GnO@_GACOE?g?`OGACCOGaGOc?HA?`GORCG_AO@B?K@[`A?OCI@A@By?_K@?SCABA?H?'+            ...   'SA?a@GC`CH?Q?C_c?cGRC@G_AOCOa@Ax?QC?_GOo_CNg@A?oC@CaCGO@CGA_O`?GSGPAGOC_@OO_'+            ...   'aCHaG?cO@CB?_`Ax?GQC?_cAOCG^OGAC@_D?IGO`?D?O_I?HAOO`AGOHA?cC?oAO`AW_Q?HCACAC'+            ...   'GO`[_OCHA?_cCACG^O_@CAGO`A?GCOGc@?I?OQOC?IGC_o@CAGCCE?A@DBG_OA@C_CP?OG_VA_CO'+            ...   'G@D?_OA_DFgA@CO?aH?Ga@?a?_I?S@A@@Oa@?@P@GCO_AACO_a_?`K_GCQ@?cAOG_OGAwQ@?K?cC'+            ...   'GH?I?ABy@C?G_S@@GCA@C`?OI?_D?OP@G?IGGP@O_AGCP?aG?GCPAX?cA?OGSGCGCAGCJ`?oAGCC'+            ...   'HAA?A_CG^O@CAG_GCSCAGCCGOCG@OA_`?`?g_OACG_`CAGOAO_H?a_?`AXA?OGcAAOP?a@?CGVAC'+            ...   'OG@_AGG`OA_?O`|?Ga?COKAAGCA@O`A?a?S@?HCG`?_?gO`AGGaC?PCAOGI?A@GO`K_CQ@?GO_`O'+            ...   'GCAACGVAG@_COOCQ?g?I?O`ByC?G_P?O`A?H@G?_P?`OAGC?gD?_C@_GCAGDG_OA@CCPC?AOQ??g'+            ...   '_R@_AGCO____OCC_@OAbaOC?g@C_H?AOOC@?a`y?PC?G`@OOH??cOG_OOAG@_COAP?WA?_KAGC@C'+            ...   '_CQ@?HAACH??c@P?_AWGaC?P?gA_C_GAD?I?Awa?S@?K?`C_GAOGCS?@|?COGaA@CAAOQ?AGCAGO'+            ...   'ACOG@_G_aC@_G@CA@@AHA?OGc?WAAH@G?P?_?cH_`CAGOGACc@@GA?S?CGVCG@OA_CICAOOC?PO?'+            ...   'OG^OG_@CAC_cC?AOP?_OICG@?oAGCO_GO_GB@?_OG`AH?cA?OH?`P??cC_O?SCGR@O_AGCAI?Q?_'+            ...   'GGS?D?O`[OI?_D@@CCA?cCA_?_O`By?_PC?IGAGOQ?@A@?aO`A?Q@?K?__`_E?_GCA@CGO`C_GCQ'+            ...   '@A?gAOQ?@C?DCACGR@GCO_AGPA@@GAA?A_CO`Aw_I?S@?SCB@?OC_?_P@ACNgOC@A?aCGOCAGCA@'+            ...   'CA?H@GG_C@AOGa?OOG_O?g_OA?oDC_AO@GOCc?@P?_A@D??cC``O?cGAOGD?@OA_CAGCA?_cwKA?'+            ...   '`?OWGG?_PO?I?S?H@?^OGAC@_Aa@CAGC?a@?_Q?@H?_OCHA?OQA_P?_G_O?WA?_IG_Q?HC@A@ADC'+            ...   'A?AI?AC_?QAWOHA?cAGG_I?S?G_OG@GA?`[D?O_IA?`GGCS?OA_?c@?Q?^OAC@_G_Ca@CA@?OGCO'+            ...   'H@G@A@?GQC?_Q@GP?_OG?IGGB?OCGaG?cO@A__QGC?E?A@CH@G?GRAGOC_@GGOW@O?O_OGa?_c?G'+            ...   'V@CGA_OOaC?a_?a?A_CcC@?CNgA?oC@GGE@?_OH?a@?_?QA`A@?QC?_KGGO_OGCAa@?A?_KCGPC@'+            ...   'G_AOAGPGC?D@?a_A?@GGO`KH?Q?C_QGAA_?gOG_OA?_GG`AwH?SA?`?cAI?A@D?I?@?QA?`By?K@'+            ...   '?O`GGACA@CGCA@CC_?WO`?`A?OCH?`OCA@COG?I?oC@ACGPCG_AO@_aAA?Aa?g?GD@G?CO`AWOc?'+            ...   'HA?OcG_?g@OGCAAAOC@ACJ_`OGACAGCS?CAGI?A`@?OCACG^'
sage: g2 = '~?A[??osR?WARSETCJ_QWASehOXQg`QwChK?qSeFQ_sTIaWIV?XIR?KAC?B?`?COCG?o?O_'+            ...   '@_?`??B?`?o@_O_WCOCHC@_?`W?E?AD_O?WCCeO?WCSEGAGAIaA@_?aw?OK?ER?`?@_HQXA?B@Q_'+            ...   'pA?a@Qg_`?o?h[?GOK@IR?@A?BEQcoCG?K\IB?GOCWiTC?GOKWIV??CGEKdH_H_?CB?`?DC??_WC'+            ...   'G?SO?AP?O_?g_?D_?`?C__?D_?`?CCo??@_O_XDC???WCGEGg_??a?`G_aa??E?AD_@cC??K?CJ?'+            ...   '@@K?O?WCCe?aa?G?KAIB?Gg_A?a?ag_@DC?OK?CV??EOO@?o?XK??GH`A?B?Qco?Gg`A?B@Q_o?C'+            ...   'SO`?P?hSO?@DCGOK?IV???K_`A@_HQWC??_cCG?KXIRG?@D?GO?WySEG?@D?GOCWiTCC??a_CGEK'+            ...   'DJ_@??K_@A@bHQWAW?@@K??_WCG?g_?CSO?A@_O_@P??Gg_?Ca?`?@P??Gg_?D_?`?C__?EOO?Ao'+            ...   '?O_AAW?@@K???WCGEPP??Gg_??B?`?pDC??aa??AGACaAIG?@DC??K?CJ?BGG?@cC??K?CJ?@@K?'+            ...   '?_e?G?KAAR?PP??Gg_A?B?a_oAIG?@DC?OCOCTC?Gg_?CSO@?o?P[??X@??K__A@_?qW??OR??GH'+            ...   '`A?B?Qco?Gg_?CSO`?@_hOW?AIG?@DCGOCOITC??PP??Gg`A@_@Qw??@cC??qACGE?dH_O?AAW?@'+            ...   '@GGO?WqSeO?AIG?@D?GO?WySEG?@DC??a_CGAKTIaA??PP??Gg@A@b@Qw?O?BGG?@c?GOKXIR?KA'+            ...   'C?H_?CCo?A@_O_?WCG@P??Gg_?CB?`?COCG@P??Gg_?Ca?`?E?AC?g_?CSO?Ao?O_@_?`@GG?@cC'+            ...   '??k?CG??WCGOR??GH_??B?`?o@_O`DC??aa???KACB?a?`AIG?@DC??COCHC@_?`AIG?@DC??K?C'+            ...   'J??o?O`cC??qA??E?AD_O?WC?OR??GH_A?B?_cq?B?_AIG?@DC?O?WCSEGAGA?Gg_?CSO@?P?PSO'+            ...   'OK?C?PP??Gg_A@_?aw?OK?C?X@??K__A@_?qWCG?K??GH_?CCo`?@_HQXA?B??AIG?@DCGO?WISE'+            ...   'GOCO??PP??Gg`A?a@Qg_`?o??@DC??aaCGE?DJ_@A@_??BGG?@cCGOK@IR?@A?BO?AAW?@@GGO?W'+            ...   'qSe?`?@g?@DC??a_CG?K\IB?GOCQ??PP??Gg@A?bDQg_@A@_O?AIG?@D?GOKWIV??CGE@??K__?E'+            ...   'O?`?pchK?_SA_OI@OGD?gCA_SA@OI?c@H?Q?c_H?QOC_HGAOCc?QOC_HGAOCc@GAQ?c@H?QD?gCA'+            ...   '_SA@OI@?gD?_SA_OKA_SA@OI@?gD?_SA_OI@OHI?c_H?QOC_HGAOCc@GAQ?eC_H?QOC_HGAOCc@G'+            ...   'AQ?c@XD?_SA_OI@OGD?gCA_SA@PKGO`A@ACGSGO`?`ACICGO_?ACGOcGO`?O`AC`ACHACGO???^?'+            ...   '????}Bw????Fo^???????Fo?}?????Bw?^?Bw?????GO`AO`AC`ACGACGOcGO`??aCGO_O`ADACG'+            ...   'OGO`A@ACGOA???@{?N_@{?????Fo?}????OFo????N_}????@{????Bw?OACGOgO`A@ACGSGO`?`'+            ...   'ACG?OaCGO_GO`AO`AC`ACGACGO_@G???Fo^?????}Bw????Fo??AC@{?????Fo?}?Fo?????^??A'+            ...   'OGO`AO`AC@ACGQCGO_GO`A?HAACGOgO`A@ACGOGO`A`ACG?GQ??^?Bw?????N_@{?????Fo?QC??'+            ...   'Fo^?????}????@{Fo???CHACGO_O`ACACGOgO`A@ACGO@AOcGO`?O`AC`ACGACGOcGO`?@GQFo??'+            ...   '??N_????^@{????Bw??`GRw?????N_@{?????Fo?}???HAO_OI@OGD?gCA_SA@OI@?gDK_??C@GA'+            ...   'Q?c@H?Q?c_H?QOC_HEW????????????????????????~~~~~'
sage: G1 = Graph(g1)
sage: G2 = Graph(g2)
sage: G1.is_isomorphic(G2)
True
is_overfull()

Tests whether the current graph is overfull.

A graph G on n vertices and m edges is said to be overfull if:

  • n is odd
  • It satisfies 2m > (n-1)\Delta(G), where \Delta(G) denotes the maximum degree among all vertices in G.

An overfull graph must have a chromatic index of \Delta(G)+1.

EXAMPLES:

A complete graph of order n > 1 is overfull if and only if n is odd:

sage: graphs.CompleteGraph(6).is_overfull()
False
sage: graphs.CompleteGraph(7).is_overfull()
True
sage: graphs.CompleteGraph(1).is_overfull()
False

The claw graph is not overfull:

sage: from sage.graphs.graph_coloring import edge_coloring
sage: g = graphs.ClawGraph()
sage: g
Claw graph: Graph on 4 vertices
sage: edge_coloring(g, value_only=True)
3
sage: g.is_overfull()
False

Checking that all complete graphs K_n for even 0 \leq n \leq 100 are not overfull:

sage: def check_overfull_Kn_even(n):
...       i = 0
...       while i <= n:
...           if graphs.CompleteGraph(i).is_overfull():
...               print "A complete graph of even order cannot be overfull."
...               return
...           i += 2
...       print "Complete graphs of even order up to %s are not overfull." % n
...
sage: check_overfull_Kn_even(100)  # long time
Complete graphs of even order up to 100 are not overfull.

The null graph, i.e. the graph with no vertices, is not overfull:

sage: Graph().is_overfull()
False
sage: graphs.CompleteGraph(0).is_overfull()
False

Checking that all complete graphs K_n for odd 1 < n \leq 100 are overfull:

sage: def check_overfull_Kn_odd(n):
...       i = 3
...       while i <= n:
...           if not graphs.CompleteGraph(i).is_overfull():
...               print "A complete graph of odd order > 1 must be overfull."
...               return
...           i += 2
...       print "Complete graphs of odd order > 1 up to %s are overfull." % n
...
sage: check_overfull_Kn_odd(100)  # long time
Complete graphs of odd order > 1 up to 100 are overfull.

The Petersen Graph, though, is not overfull while its chromatic index is \Delta+1:

sage: g = graphs.PetersenGraph()
sage: g.is_overfull()
False
sage: from sage.graphs.graph_coloring import edge_coloring
sage: max(g.degree()) + 1 ==  edge_coloring(g, value_only=True)
True
is_planar(on_embedding=None, kuratowski=False, set_embedding=False, set_pos=False)

Returns True if the graph is planar, and False otherwise. This wraps the reference implementation provided by John Boyer of the linear time planarity algorithm by edge addition due to Boyer Myrvold. (See reference code in graphs.planarity).

Note - the argument on_embedding takes precedence over set_embedding. This means that only the on_embedding combinatorial embedding will be tested for planarity and no _embedding attribute will be set as a result of this function call, unless on_embedding is None.

REFERENCE:

  • [1] John M. Boyer and Wendy J. Myrvold, On the Cutting Edge: Simplified O(n) Planarity by Edge Addition. Journal of Graph Algorithms and Applications, Vol. 8, No. 3, pp. 241-273, 2004.

INPUT:

  • kuratowski - returns a tuple with boolean as first entry. If the graph is nonplanar, will return the Kuratowski subgraph or minor as the second tuple entry. If the graph is planar, returns None as the second entry.
  • on_embedding - the embedding dictionary to test planarity on. (i.e.: will return True or False only for the given embedding.)
  • set_embedding - whether or not to set the instance field variable that contains a combinatorial embedding (clockwise ordering of neighbors at each vertex). This value will only be set if a planar embedding is found. It is stored as a Python dict: v1: [n1,n2,n3] where v1 is a vertex and n1,n2,n3 are its neighbors.
  • set_pos - whether or not to set the position dictionary (for plotting) to reflect the combinatorial embedding. Note that this value will default to False if set_emb is set to False. Also, the position dictionary will only be updated if a planar embedding is found.

EXAMPLES:

sage: g = graphs.CubeGraph(4)
sage: g.is_planar()
False
sage: g = graphs.CircularLadderGraph(4)
sage: g.is_planar(set_embedding=True)
True
sage: g.get_embedding()
{0: [1, 4, 3],
 1: [2, 5, 0],
 2: [3, 6, 1],
 3: [0, 7, 2],
 4: [0, 5, 7],
 5: [1, 6, 4],
 6: [2, 7, 5],
 7: [4, 6, 3]}
sage: g = graphs.PetersenGraph()
sage: (g.is_planar(kuratowski=True))[1].adjacency_matrix()
[0 1 0 0 0 1 0 0 0]
[1 0 1 0 0 0 1 0 0]
[0 1 0 1 0 0 0 1 0]
[0 0 1 0 0 0 0 0 1]
[0 0 0 0 0 0 1 1 0]
[1 0 0 0 0 0 0 1 1]
[0 1 0 0 1 0 0 0 1]
[0 0 1 0 1 1 0 0 0]
[0 0 0 1 0 1 1 0 0]
sage: k43 = graphs.CompleteBipartiteGraph(4,3)
sage: result = k43.is_planar(kuratowski=True); result
(False, Graph on 6 vertices)
sage: result[1].is_isomorphic(graphs.CompleteBipartiteGraph(3,3))
True

Multi-edged and looped graphs are partially supported:

sage: G = Graph({0:[1,1]}, multiedges=True)
sage: G.is_planar()
True
sage: G.is_planar(on_embedding={})
...
NotImplementedError: Cannot compute with embeddings of multiple-edged or looped graphs.
sage: G.is_planar(set_pos=True)
...
NotImplementedError: Cannot compute with embeddings of multiple-edged or looped graphs.
sage: G.is_planar(set_embedding=True)
...
NotImplementedError: Cannot compute with embeddings of multiple-edged or looped graphs.
sage: G.is_planar(kuratowski=True)
(True, None)
sage: G = graphs.CompleteGraph(5)
sage: G = Graph(G, multiedges=True)
sage: G.add_edge(0,1)
sage: G.is_planar()
False
sage: b,k = G.is_planar(kuratowski=True)
sage: b
False
sage: k.vertices()
[0, 1, 2, 3, 4]
is_regular(k=None)

Return True if this graph is (k-)regular.

INPUT:

  • k (default: None) - the degree of regularity to check for

EXAMPLES:

sage: G = graphs.HoffmanSingletonGraph()
sage: G.is_regular()
True
sage: G.is_regular(9)
False

So the Hoffman-Singleton graph is regular, but not 9-regular. In fact, we can now find the degree easily as follows:

sage: G.degree_iterator().next()
7

The house graph is not regular:

sage: graphs.HouseGraph().is_regular()
False
is_subgraph(other)

Tests whether self is a subgraph of other.

EXAMPLES:

sage: P = graphs.PetersenGraph()
sage: G = P.subgraph(range(6))
sage: G.is_subgraph(P)
True
is_transitively_reduced()

Returns True if the digraph is transitively reduced and False otherwise.

A digraph is transitively reduced if it is equal to its transitive reduction.

EXAMPLES:

sage: d = DiGraph({0:[1],1:[2],2:[3]})
sage: d.is_transitively_reduced()
True

sage: d = DiGraph({0:[1,2],1:[2]})
sage: d.is_transitively_reduced()
False

sage: d = DiGraph({0:[1,2],1:[2],2:[]})
sage: d.is_transitively_reduced()
False
is_tree()

Return True if the graph is a tree.

EXAMPLES:

sage: for g in graphs.trees(6):
...     g.is_tree()
True
True
True
True
True
True
is_vertex_transitive(partition=None, verbosity=0, edge_labels=False, order=False, return_group=True, orbits=False)

Returns whether the automorphism group of self is transitive within the partition provided, by default the unit partition of the vertices of self (thus by default tests for vertex transitivity in the usual sense).

EXAMPLES:

sage: G = Graph({0:[1],1:[2]})
sage: G.is_vertex_transitive()
False
sage: P = graphs.PetersenGraph()
sage: P.is_vertex_transitive()
True
sage: D = graphs.DodecahedralGraph()
sage: D.is_vertex_transitive()
True
sage: R = graphs.RandomGNP(2000, .01)
sage: R.is_vertex_transitive()
False
kirchhoff_matrix(weighted=None, indegree=True, normalized=False, **kwds)

Returns the Kirchhoff matrix (a.k.a. the Laplacian) of the graph.

The Kirchhoff matrix is defined to be D - M, where D is the diagonal degree matrix (each diagonal entry is the degree of the corresponding vertex), and M is the adjacency matrix. If normalized is True, then the returned matrix is D^{-1/2}(D-M)D^{-1/2}.

( In the special case of DiGraphs, D is defined as the diagonal in-degree matrix or diagonal out-degree matrix according to the value of indegree)

INPUT:

  • weighted – Binary variable :
    • If True, the weighted adjacency matrix is used for M, and the diagonal matrix D takes into account the weight of edges (replace in the definition “degree” by “sum of the incident edges” ).
    • Else, each edge is assumed to have weight 1.

    Default is to take weights into consideration if and only if the graph is weighted.

  • indegree – Binary variable :
    • If True, each diagonal entry of D is equal to the in-degree of the corresponding vertex.

    • Else, each diagonal entry of D is equal to the out-degree of the corresponding vertex.

      By default, indegree is set to True

    ( This variable only matters when the graph is a digraph )

  • normalized – Binary variable :

    • If True, the returned matrix is D^{-1/2}(D-M)D^{-1/2}, a normalized version of the Laplacian matrix.
    • Else, the matrix D-M is returned

Note that any additional keywords will be passed on to either the adjacency_matrix or weighted_adjacency_matrix method.

AUTHORS:

  • Tom Boothby
  • Jason Grout

EXAMPLES:

sage: G = Graph(sparse=True)
sage: G.add_edges([(0,1,1),(1,2,2),(0,2,3),(0,3,4)])
sage: M = G.kirchhoff_matrix(weighted=True); M
[ 8 -1 -3 -4]
[-1  3 -2  0]
[-3 -2  5  0]
[-4  0  0  4]
sage: M = G.kirchhoff_matrix(); M
[ 3 -1 -1 -1]
[-1  2 -1  0]
[-1 -1  2  0]
[-1  0  0  1]
sage: G.set_boundary([2,3])
sage: M = G.kirchhoff_matrix(weighted=True, boundary_first=True); M
[ 5  0 -3 -2]
[ 0  4 -4  0]
[-3 -4  8 -1]
[-2  0 -1  3]
sage: M = G.kirchhoff_matrix(boundary_first=True); M
[ 2  0 -1 -1]
[ 0  1 -1  0]
[-1 -1  3 -1]
[-1  0 -1  2]
sage: M = G.laplacian_matrix(boundary_first=True); M
[ 2  0 -1 -1]
[ 0  1 -1  0]
[-1 -1  3 -1]
[-1  0 -1  2]
sage: M = G.laplacian_matrix(boundary_first=True, sparse=False); M
[ 2  0 -1 -1]
[ 0  1 -1  0]
[-1 -1  3 -1]
[-1  0 -1  2]
sage: M = G.laplacian_matrix(normalized=True); M
[                   1 -1/6*sqrt(2)*sqrt(3) -1/6*sqrt(2)*sqrt(3)         -1/3*sqrt(3)]
[-1/6*sqrt(2)*sqrt(3)                    1                 -1/2                    0]
[-1/6*sqrt(2)*sqrt(3)                 -1/2                    1                    0]
[        -1/3*sqrt(3)                    0                    0                    1]

A weighted directed graph with loops, changing the variable indegree

sage: G = DiGraph({1:{1:2,2:3}, 2:{1:4}}, weighted=True,sparse=True)
sage: G.laplacian_matrix()
[ 4 -3]
[-4  3]
sage: G = DiGraph({1:{1:2,2:3}, 2:{1:4}}, weighted=True,sparse=True)
sage: G.laplacian_matrix(indegree=False)
[ 3 -3]
[-4  4]
laplacian_matrix(weighted=None, indegree=True, normalized=False, **kwds)

Returns the Kirchhoff matrix (a.k.a. the Laplacian) of the graph.

The Kirchhoff matrix is defined to be D - M, where D is the diagonal degree matrix (each diagonal entry is the degree of the corresponding vertex), and M is the adjacency matrix. If normalized is True, then the returned matrix is D^{-1/2}(D-M)D^{-1/2}.

( In the special case of DiGraphs, D is defined as the diagonal in-degree matrix or diagonal out-degree matrix according to the value of indegree)

INPUT:

  • weighted – Binary variable :
    • If True, the weighted adjacency matrix is used for M, and the diagonal matrix D takes into account the weight of edges (replace in the definition “degree” by “sum of the incident edges” ).
    • Else, each edge is assumed to have weight 1.

    Default is to take weights into consideration if and only if the graph is weighted.

  • indegree – Binary variable :
    • If True, each diagonal entry of D is equal to the in-degree of the corresponding vertex.

    • Else, each diagonal entry of D is equal to the out-degree of the corresponding vertex.

      By default, indegree is set to True

    ( This variable only matters when the graph is a digraph )

  • normalized – Binary variable :

    • If True, the returned matrix is D^{-1/2}(D-M)D^{-1/2}, a normalized version of the Laplacian matrix.
    • Else, the matrix D-M is returned

Note that any additional keywords will be passed on to either the adjacency_matrix or weighted_adjacency_matrix method.

AUTHORS:

  • Tom Boothby
  • Jason Grout

EXAMPLES:

sage: G = Graph(sparse=True)
sage: G.add_edges([(0,1,1),(1,2,2),(0,2,3),(0,3,4)])
sage: M = G.kirchhoff_matrix(weighted=True); M
[ 8 -1 -3 -4]
[-1  3 -2  0]
[-3 -2  5  0]
[-4  0  0  4]
sage: M = G.kirchhoff_matrix(); M
[ 3 -1 -1 -1]
[-1  2 -1  0]
[-1 -1  2  0]
[-1  0  0  1]
sage: G.set_boundary([2,3])
sage: M = G.kirchhoff_matrix(weighted=True, boundary_first=True); M
[ 5  0 -3 -2]
[ 0  4 -4  0]
[-3 -4  8 -1]
[-2  0 -1  3]
sage: M = G.kirchhoff_matrix(boundary_first=True); M
[ 2  0 -1 -1]
[ 0  1 -1  0]
[-1 -1  3 -1]
[-1  0 -1  2]
sage: M = G.laplacian_matrix(boundary_first=True); M
[ 2  0 -1 -1]
[ 0  1 -1  0]
[-1 -1  3 -1]
[-1  0 -1  2]
sage: M = G.laplacian_matrix(boundary_first=True, sparse=False); M
[ 2  0 -1 -1]
[ 0  1 -1  0]
[-1 -1  3 -1]
[-1  0 -1  2]
sage: M = G.laplacian_matrix(normalized=True); M
[                   1 -1/6*sqrt(2)*sqrt(3) -1/6*sqrt(2)*sqrt(3)         -1/3*sqrt(3)]
[-1/6*sqrt(2)*sqrt(3)                    1                 -1/2                    0]
[-1/6*sqrt(2)*sqrt(3)                 -1/2                    1                    0]
[        -1/3*sqrt(3)                    0                    0                    1]

A weighted directed graph with loops, changing the variable indegree

sage: G = DiGraph({1:{1:2,2:3}, 2:{1:4}}, weighted=True,sparse=True)
sage: G.laplacian_matrix()
[ 4 -3]
[-4  3]
sage: G = DiGraph({1:{1:2,2:3}, 2:{1:4}}, weighted=True,sparse=True)
sage: G.laplacian_matrix(indegree=False)
[ 3 -3]
[-4  4]
latex_options()

Returns an instance of GraphLatex for the graph.

Changes to this object will affect the \mbox{\rm\LaTeX} version of the graph.

EXAMPLES:

sage: g = graphs.PetersenGraph()
sage: opts = g.latex_options()
sage: opts
LaTeX options for Petersen graph: {}
sage: opts.set_option('tkz_style', 'Classic')
sage: opts
LaTeX options for Petersen graph: {'tkz_style': 'Classic'}
layout(layout=None, pos=None, dim=2, save_pos=False, **options)

Returns a layout for the vertices of this graph.

INPUT:

  • layout – one of “acyclic”, “circular”, “ranked”, “graphviz”, “planar”, “spring”, or “tree”
  • pos – a dictionary of positions or None (the default)
  • save_pos – a boolean
  • layout options – (see below)

If layout=algorithm is specified, this algorithm is used to compute the positions.

Otherwise, if pos is specified, use the given positions.

Otherwise, try to fetch previously computed and saved positions.

Otherwise use the default layout (usually the spring layout)

If save_pos = True, the layout is saved for later use.

EXAMPLES:

sage: g = digraphs.ButterflyGraph(1)
sage: g.layout()
{('1', 1): [..., ...],
 ('0', 0): [..., ...],
 ('1', 0): [..., ...],
 ('0', 1): [..., ...]}

sage: 1+1
2
sage: x = g.layout(layout = "acyclic_dummy", save_pos = True)
sage: x =  {('1', 1): [41, 18], ('0', 0): [41, 90], ('1', 0): [140, 90], ('0', 1): [141, 18]}

{('1', 1): [41, 18], ('0', 0): [41, 90], ('1', 0): [140, 90], ('0', 1): [141, 18]}


sage: g.layout(dim = 3)
{('1', 1): [..., ..., ...],
 ('0', 0): [..., ..., ...],
 ('1', 0): [..., ..., ...],
 ('0', 1): [..., ..., ...]}

Here is the list of all the available layout options:

sage: from sage.graphs.graph_plot import layout_options
sage: list(sorted(layout_options.iteritems()))
[('by_component', 'Whether to do the spring layout by connected component -- a boolean.'),
 ('dim', 'The dimension of the layout -- 2 or 3.'),
 ('heights', 'A dictionary mapping heights to the list of vertices at this height.'),
 ('iterations', 'The number of times to execute the spring layout algorithm.'),
 ('layout', 'A layout algorithm -- one of "acyclic", "circular", "ranked", "graphviz", "planar", "spring", or "tree".'),
 ('prog', 'Which graphviz layout program to use -- one of "circo", "dot", "fdp", "neato", or "twopi".'),
 ('save_pos', 'Whether or not to save the computed position for the graph.'),
 ('spring', 'Use spring layout to finalize the current layout.'),
 ('tree_orientation', 'The direction of tree branches -- "up" or "down".'),
 ('tree_root', 'A vertex designation for drawing trees.')]

Some of them only apply to certain layout algorithms. For details, see layout_acyclic(), layout_planar(), layout_circular(), layout_spring(), ...

..warning: unknown optional arguments are silently ignored

..warning: graphviz and dot2tex are currently required to obtain a nice ‘acyclic’ layout. See layout_graphviz() for installation instructions.

A subclass may implement another layout algorithm blah, by implementing a method layout_blah(). It may override the default layout by overriding layout_default(), and similarly override the predefined layouts.

TODO: use this feature for all the predefined graphs classes (like for the Petersen graph, ...), rather than systematically building the layout at construction time.

layout_circular(dim=2, **options)

Computes a circular layout for this graph

OUTPUT: a dictionary mapping vertices to positions

EXAMPLES:

sage: G = graphs.CirculantGraph(7,[1,3])
sage: G.layout_circular()
{0: [6.12...e-17, 1.0],
 1: [-0.78...,  0.62...],
 2: [-0.97..., -0.22...],
 3: [-0.43..., -0.90...],
 4: [0.43...,  -0.90...],
 5: [0.97...,  -0.22...],
 6: [0.78...,   0.62...]}
sage: G.plot(layout = "circular")
layout_default(heights=None, by_component=True, **options)

Computes a spring layout for this graph

INPUT:

  • iterations – a positive integer
  • dim – 2 or 3 (default: 2)

OUTPUT: a dictionary mapping vertices to positions

Returns a layout computed by randomly arranging the vertices along the given heights

EXAMPLES:

sage: g = graphs.LadderGraph(3) #TODO!!!!
sage: g.layout_ranked(heights = dict( (i,[i, i+3]) for i in range(3) ))
{0: [..., 0],
 1: [..., 1],
 2: [..., 2],
 3: [..., 0],
 4: [..., 1],
 5: [..., 2]}
sage: g = graphs.LadderGraph(7)
sage: g.plot(layout = "ranked", heights = dict( (i,[i, i+7]) for i in range(7) ))
layout_extend_randomly(pos, dim=2)

Extends randomly a partial layout

INPUT:

  • pos: a dictionary mapping vertices to positions

OUTPUT: a dictionary mapping vertices to positions

The vertices not referenced in pos are assigned random positions within the box delimited by the other vertices.

EXAMPLES:

sage: H = digraphs.ButterflyGraph(1)
sage: H.layout_extend_randomly({('0',0): (0,0), ('1',1): (1,1)})
{('1', 1): (1, 1),
 ('0', 0): (0, 0),
 ('1', 0): [0..., 0...],
 ('0', 1): [0..., 0...]}
layout_graphviz(dim=2, prog='dot', **options)

Calls graphviz to compute a layout of the vertices of this graph.

INPUT:

  • prog – one of “dot”, “neato”, “twopi”, “circo”, or “fdp”

EXAMPLES:

sage: g = digraphs.ButterflyGraph(2)
sage: g.layout_graphviz() # optional - dot2tex, graphviz
{('00', 0): [...,...],
 ('00', 1): [...,...],
 ('00', 2): [...,...],
 ('01', 0): [...,...],
 ('01', 1): [...,...],
 ('01', 2): [...,...],
 ('10', 0): [...,...],
 ('10', 1): [...,...],
 ('10', 2): [...,...],
 ('11', 0): [...,...],
 ('11', 1): [...,...],
 ('11', 2): [...,...]}
sage: g.plot(layout = "graphviz") # optional - dot2tex, graphviz

Note: the actual coordinates are not deterministic

By default, an acyclic layout is computed using graphviz‘s dot layout program. One may specify an alternative layout program:

sage: g.plot(layout = "graphviz", prog = "dot")   # optional - dot2tex, graphviz
sage: g.plot(layout = "graphviz", prog = "neato") # optional - dot2tex, graphviz
sage: g.plot(layout = "graphviz", prog = "twopi") # optional - dot2tex, graphviz
sage: g.plot(layout = "graphviz", prog = "fdp")   # optional - dot2tex, graphviz
sage: g = graphs.BalancedTree(5,2)
sage: g.plot(layout = "graphviz", prog = "circo") # optional - dot2tex, graphviz

TODO: put here some cool examples showcasing graphviz features.

This requires graphviz and the dot2tex spkg. Here are some installation tips:

TODO: use the graphviz functionality of Networkx 1.0 once it will be merged into Sage.

layout_planar(set_embedding=False, on_embedding=None, external_face=None, test=False, circular=False, **options)

Uses Schnyder’s algorithm to compute a planar layout for self, raising an error if self is not planar.

INPUT:

  • set_embedding - if True, sets the combinatorial embedding used (see self.get_embedding())
  • on_embedding - dict: provide a combinatorial embedding
  • external_face - ignored
  • test - if True, perform sanity tests along the way
  • circular - ignored

EXAMPLES:

sage: g = graphs.PathGraph(10)
sage: g.set_planar_positions(test=True)
True
sage: g = graphs.BalancedTree(3,4)
sage: g.set_planar_positions(test=True)
True
sage: g = graphs.CycleGraph(7)
sage: g.set_planar_positions(test=True)
True
sage: g = graphs.CompleteGraph(5)
sage: g.set_planar_positions(test=True,set_embedding=True)
...
Exception: Complete graph is not a planar graph.
layout_ranked(heights=None, dim=2, spring=False, **options)

Computes a ranked layout for this graph

INPUT:

  • heights – a dictionary mapping heights to the list of vertices at this height

OUTPUT: a dictionary mapping vertices to positions

Returns a layout computed by randomly arranging the vertices along the given heights

EXAMPLES:

sage: g = graphs.LadderGraph(3)
sage: g.layout_ranked(heights = dict( (i,[i, i+3]) for i in range(3) ))
{0: [..., 0],
 1: [..., 1],
 2: [..., 2],
 3: [..., 0],
 4: [..., 1],
 5: [..., 2]}
sage: g = graphs.LadderGraph(7)
sage: g.plot(layout = "ranked", heights = dict( (i,[i, i+7]) for i in range(7) ))
layout_spring(heights=None, by_component=True, **options)

Computes a spring layout for this graph

INPUT:

  • iterations – a positive integer
  • dim – 2 or 3 (default: 2)

OUTPUT: a dictionary mapping vertices to positions

Returns a layout computed by randomly arranging the vertices along the given heights

EXAMPLES:

sage: g = graphs.LadderGraph(3) #TODO!!!!
sage: g.layout_ranked(heights = dict( (i,[i, i+3]) for i in range(3) ))
{0: [..., 0],
 1: [..., 1],
 2: [..., 2],
 3: [..., 0],
 4: [..., 1],
 5: [..., 2]}
sage: g = graphs.LadderGraph(7)
sage: g.plot(layout = "ranked", heights = dict( (i,[i, i+7]) for i in range(7) ))
layout_tree(tree_orientation='down', tree_root=None, dim=2, **options)

Computes an ordered tree layout for this graph, which should be a tree (no non oriented cycles).

INPUT:

  • tree_root – a vertex
  • tree_orientation – “up” or “down”

OUTPUT: a dictionary mapping vertices to positions

EXAMPLES:

sage: G = graphs.BalancedTree(2,2)
sage: G.layout_tree(tree_root = 0)
{0: [1.0..., 2],
 1: [0.8..., 1],
 2: [1.2..., 1],
 3: [0.4..., 0],
 4: [0.8..., 0],
 5: [1.2..., 0],
 6: [1.6..., 0]}
sage: G = graphs.BalancedTree(2,4)
sage: G.plot(layout="tree", tree_root = 0, tree_orientation = "up")
lex_BFS(reverse=False, tree=False, initial_vertex=None)

Performs a Lex BFS on the graph.

A Lex BFS ( or Lexicographic Breadth-First Search ) is a Breadth First Search used for the recognition of Chordal Graphs. For more information, see the Wikipedia article on Lex-BFS.

INPUT:

  • reverse (boolean) – whether to return the vertices in discovery order, or the reverse.

    False by default.

  • tree (boolean) – whether to return the discovery directed tree (each vertex being linked to the one that saw it for the first time)

    False by default.

  • initial_vertex – the first vertex to consider.

    None by default.

ALGORITHM:

This algorithm maintains for each vertex left in the graph a code corresponding to the vertices already removed. The vertex of maximal code ( according to the lexicographic order ) is then removed, and the codes are updated.

This algorithm runs in time O(n^2) ( where n is the number of vertices in the graph ), which is not optimal. An optimal algorithm would run in time O(m) ( where m is the number of edges in the graph ), and require the use of a doubly-linked list which are not available in python and can not really be written efficiently. This could be done in Cython, though.

EXAMPLE:

A Lex BFS is obviously an ordering of the vertices:

sage: g = graphs.PetersenGraph()
sage: len(g.lex_BFS()) == g.order()
True

For a Chordal Graph, a reversed Lex BFS is a Perfect Elimination Order

sage: g = graphs.PathGraph(3).lexicographic_product(graphs.CompleteGraph(2))
sage: g.lex_BFS(reverse=True)
[(2, 1), (2, 0), (1, 1), (1, 0), (0, 1), (0, 0)]

And the vertices at the end of the tree of discovery are, for chordal graphs, simplicial vertices (their neighborhood is a complete graph):

sage: g = graphs.ClawGraph().lexicographic_product(graphs.CompleteGraph(2))
sage: v = g.lex_BFS()[-1]
sage: peo, tree = g.lex_BFS(initial_vertex = v,  tree=True)
sage: leaves = [v for v in tree if tree.in_degree(v) ==0]
sage: all([g.subgraph(g.neighbors(v)).is_clique() for v in leaves])
True
lexicographic_product(other)

Returns the lexicographic product of self and other.

The lexicographic product of G and H is the graph L with vertex set V(L) equal to the Cartesian product of the vertices V(G) and V(H), and ((u,v), (w,x)) is an edge iff - (u, w) is an edge of self, or - u = w and (v, x) is an edge of other.

EXAMPLES:

sage: Z = graphs.CompleteGraph(2)
sage: C = graphs.CycleGraph(5)
sage: L = C.lexicographic_product(Z); L
Graph on 10 vertices
sage: L.plot() # long time
sage: D = graphs.DodecahedralGraph()
sage: P = graphs.PetersenGraph()
sage: L = D.lexicographic_product(P); L
Graph on 200 vertices
sage: L.plot() # long time
line_graph(labels=True)

Returns the line graph of the (di)graph.

The line graph of an undirected graph G is an undirected graph H such that the vertices of H are the edges of G and two vertices e and f of H are adjacent if e and f share a common vertex in G. In other words, an edge in H represents a path of length 2 in G.

The line graph of a directed graph G is a directed graph H such that the vertices of H are the edges of G and two vertices e and f of H are adjacent if e and f share a common vertex in G and the terminal vertex of e is the initial vertex of f. In other words, an edge in H represents a (directed) path of length 2 in G.

EXAMPLES:

sage: g=graphs.CompleteGraph(4)
sage: h=g.line_graph()
sage: h.vertices()
[(0, 1, None),
(0, 2, None),
(0, 3, None),
(1, 2, None),
(1, 3, None),
(2, 3, None)]
sage: h.am()
[0 1 1 1 1 0]
[1 0 1 1 0 1]
[1 1 0 0 1 1]
[1 1 0 0 1 1]
[1 0 1 1 0 1]
[0 1 1 1 1 0]
sage: h2=g.line_graph(labels=False)
sage: h2.vertices()
[(0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 3)]
sage: h2.am()==h.am()
True
sage: g = DiGraph([[1..4],lambda i,j: i<j])
sage: h = g.line_graph()
sage: h.vertices()
[(1, 2, None),
(1, 3, None),
(1, 4, None),
(2, 3, None),
(2, 4, None),
(3, 4, None)]
sage: h.edges()
[((1, 2, None), (2, 3, None), None),
 ((1, 2, None), (2, 4, None), None),
 ((1, 3, None), (3, 4, None), None),
 ((2, 3, None), (3, 4, None), None)]
loop_edges()

Returns a list of all loops in the graph.

EXAMPLES:

sage: G = Graph(4, loops=True)
sage: G.add_edges( [ (0,0), (1,1), (2,2), (3,3), (2,3) ] )
sage: G.loop_edges()
[(0, 0, None), (1, 1, None), (2, 2, None), (3, 3, None)]
sage: D = DiGraph(4, loops=True)
sage: D.add_edges( [ (0,0), (1,1), (2,2), (3,3), (2,3) ] )
sage: D.loop_edges()
[(0, 0, None), (1, 1, None), (2, 2, None), (3, 3, None)]
sage: G = Graph(4, loops=True, multiedges=True, sparse=True)
sage: G.add_edges([(i,i) for i in range(4)])
sage: G.loop_edges()
[(0, 0, None), (1, 1, None), (2, 2, None), (3, 3, None)]
loop_vertices()

Returns a list of vertices with loops.

EXAMPLES:

sage: G = Graph({0 : [0], 1: [1,2,3], 2: [3]}, loops=True)
sage: G.loop_vertices()
[0, 1]
loops(new=None, labels=True)

Returns any loops in the (di)graph.

INPUT:

  • new – deprecated
  • labels – whether returned edges have labels ((u,v,l)) or not ((u,v)).

EXAMPLES:

sage: G = Graph(loops=True); G
Looped graph on 0 vertices
sage: G.has_loops()
False
sage: G.allows_loops()
True
sage: G.add_edge((0,0))
sage: G.has_loops()
True
sage: G.loops()
[(0, 0, None)]
sage: G.allow_loops(False); G
Graph on 1 vertex
sage: G.has_loops()
False
sage: G.edges()
[]

sage: D = DiGraph(loops=True); D
Looped digraph on 0 vertices
sage: D.has_loops()
False
sage: D.allows_loops()
True
sage: D.add_edge((0,0))
sage: D.has_loops()
True
sage: D.loops()
[(0, 0, None)]
sage: D.allow_loops(False); D
Digraph on 1 vertex
sage: D.has_loops()
False
sage: D.edges()
[]

sage: G = graphs.PetersenGraph()
sage: G.loops()
[]
matching(value_only=False, algorithm='Edmonds', use_edge_labels=True, solver=None, verbose=0)

Returns a maximum weighted matching of the graph represented by the list of its edges. For more information, see the Wikipedia article on matchings.

Given a graph G such that each edge e has a weight w_e, a maximum matching is a subset S of the edges of G of maximum weight such that no two edges of S are incident with each other.

As an optimization problem, it can be expressed as:

\mbox{Maximize : }&\sum_{e\in G.edges()} w_e b_e\\
\mbox{Such that : }&\forall v \in G, \sum_{(u,v)\in G.edges()} b_{(u,v)}\leq 1\\
&\forall x\in G, b_x\mbox{ is a binary variable}

INPUT:

  • value_only – boolean (default: False). When set to True, only the cardinal (or the weight) of the matching is returned.
  • algorithm – string (default: "Edmonds")
    • "Edmonds" selects Edmonds’ algorithm as implemented in NetworkX
    • "LP" uses a Linear Program formulation of the matching problem
  • use_edge_labels – boolean (default: True)
    • When set to True, computes a weighted matching where each edge is weighted by its label. (If an edge has no label, 1 is assumed.)
    • When set to False, each edge has weight 1.
  • solver – (default: None) Specify a Linear Program (LP) solver to be used. If set to None, the default one is used. For more information on LP solvers and which default solver is used, see the method solve of the class MixedIntegerLinearProgram.
  • verbose – integer (default: 0). Sets the level of verbosity. Set to 0 by default, which means quiet. Only useful when algorithm == "LP".

ALGORITHM:

The problem is solved using Edmond’s algorithm implemented in NetworkX, or using Linear Programming depending on the value of algorithm.

EXAMPLES:

Maximum matching in a Pappus Graph:

sage: g = graphs.PappusGraph()
sage: g.matching(value_only=True)
9.0

Same test with the Linear Program formulation:

sage: g = graphs.PappusGraph()
sage: g.matching(algorithm="LP", value_only=True)
9.0

TESTS:

If algorithm is set to anything different from "Edmonds" or "LP", an exception is raised:

sage: g = graphs.PappusGraph()
sage: g.matching(algorithm="somethingdifferent")
...
ValueError: Algorithm must be set to either "Edmonds" or "LP".
max_cut(value_only=True, use_edge_labels=True, vertices=False, solver=None, verbose=0)

Returns a maximum edge cut of the graph. For more information, see the Wikipedia article on cuts.

INPUT:

  • value_only – boolean (default: True)
    • When set to True (default), only the value is returned.
    • When set to False, both the value and a maximum edge cut are returned.
  • use_edge_labels – boolean (default: True)
    • When set to True, computes a maximum weighted cut where each edge has a weight defined by its label. (If an edge has no label, 1 is assumed.)
    • When set to False, each edge has weight 1.
  • vertices – boolean (default: False)
    • When set to True, also returns the two sets of vertices that are disconnected by the cut. This implies value_only=False.
  • solver – (default: None) Specify a Linear Program (LP) solver to be used. If set to None, the default one is used. For more information on LP solvers and which default solver is used, see the method solve of the class MixedIntegerLinearProgram.
  • verbose – integer (default: 0). Sets the level of verbosity. Set to 0 by default, which means quiet.

EXAMPLE:

Quite obviously, the max cut of a bipartite graph is the number of edges, and the two sets of vertices are the the two sides

sage: g = graphs.CompleteBipartiteGraph(5,6)
sage: [ value, edges, [ setA, setB ]] = g.max_cut(vertices=True)
sage: value == 5*6
True
sage: bsetA, bsetB  = map(list,g.bipartite_sets())
sage: (bsetA == setA and bsetB == setB ) or ((bsetA == setB and bsetB == setA ))
True

The max cut of a Petersen graph:

sage: g=graphs.PetersenGraph()
sage: g.max_cut()
12.0
maximum_average_degree(value_only=True)

Returns the Maximum Average Degree (MAD) of the current graph.

The Maximum Average Degree (MAD) of a graph is defined as the average degree of its densest subgraph. More formally, Mad(G) = \max_{H\subseteq G} Ad(H), where Ad(G) denotes the average degree of G.

This can be computed in polynomial time.

INPUT:

  • value_only (boolean) – True by default

    • If value_only=True, only the numerical value of the MAD is returned.
    • Else, the subgraph of G realizing the MAD is returned.

EXAMPLES:

In any graph, the Mad is always larger than the average degree:

sage: g = graphs.RandomGNP(20,.3)
sage: mad_g = g.maximum_average_degree()
sage: g.average_degree() <= mad_g
True

Unlike the average degree, the Mad of the disjoint union of two graphs is the maximum of the Mad of each graphs:

sage: h = graphs.RandomGNP(20,.3)
sage: mad_h = h.maximum_average_degree()
sage: (g+h).maximum_average_degree() == max(mad_g, mad_h)
True

The subgraph of a regular graph realizing the maximum average degree is always the whole graph

sage: g = graphs.CompleteGraph(5)
sage: mad_g = g.maximum_average_degree(value_only=False)
sage: g.is_isomorphic(mad_g)
True

This also works for complete bipartite graphs

sage: g = graphs.CompleteBipartiteGraph(3,4)
sage: mad_g = g.maximum_average_degree(value_only=False)
sage: g.is_isomorphic(mad_g)
True           
merge_vertices(vertices)

Merge vertices.

This function replaces a set S of vertices by a single vertex v_{new}, such that the edge uv_{new} exists if and only if \exists v'\in S: (u,v')\in G.

The new vertex is named after the first vertex in the list given in argument.

In the case of multigraphs, the multiplicity is preserved.

INPUT:

  • vertices – the set of vertices to be merged

EXAMPLE:

sage: g=graphs.CycleGraph(3)
sage: g.merge_vertices([0,1])
sage: g.edges()
[(0, 2, {})]
sage: # With a Multigraph :
sage: g=graphs.CycleGraph(3)
sage: g.allow_multiple_edges(True)
sage: g.merge_vertices([0,1])
sage: g.edges()
[(0, 2, {}), (0, 2, {})]
sage: P=graphs.PetersenGraph()
sage: P.merge_vertices([5,7])
sage: P.vertices()
[0, 1, 2, 3, 4, 5, 6, 8, 9]
minimum_outdegree_orientation(use_edge_labels=False, solver=None, verbose=0)

Returns a DiGraph which is an orientation with the smallest possible maximum outdegree of the current graph.

Given a Graph G, is is polynomial to compute an orientation D of the edges of G such that the maximum out-degree in D is minimized. This problem, though, is NP-complete in the weighted case [AMOZ06].

INPUT:

  • use_edge_labels – boolean (default: False)
    • When set to True, uses edge labels as weights to compute the orientation and assumes a weight of 1 when there is no value available for a given edge.
    • When set to False (default), gives a weight of 1 to all the edges.
  • solver – (default: None) Specify a Linear Program (LP) solver to be used. If set to None, the default one is used. For more information on LP solvers and which default solver is used, see the method solve of the class MixedIntegerLinearProgram.
  • verbose – integer (default: 0). Sets the level of verbosity. Set to 0 by default, which means quiet.

EXAMPLE:

Given a complete bipartite graph K_{n,m}, the maximum out-degree of an optimal orientation is \left\lceil \frac {nm} {n+m}\right\rceil:

sage: g = graphs.CompleteBipartiteGraph(3,4)
sage: o = g.minimum_outdegree_orientation()
sage: max(o.out_degree()) == ceil((4*3)/(3+4))
True

REFERENCES:

[AMOZ06]Asahiro, Y. and Miyano, E. and Ono, H. and Zenmyo, K. Graph orientation algorithms to minimize the maximum outdegree Proceedings of the 12th Computing: The Australasian Theory Symposium Volume 51, page 20 Australian Computer Society, Inc. 2006
multicommodity_flow(terminals, integer=True, use_edge_labels=False, vertex_bound=False, solver=None, verbose=0)

Solves a multicommodity flow problem.

In the multicommodity flow problem, we are given a set of pairs (s_i, t_i), called terminals meaning that s_i is willing some flow to t_i.

Even though it is a natural generalisation of the flow problem this version of it is NP-Complete to solve when the flows are required to be integer.

For more information, see the Wikipedia page on multicommodity flows  
<http://en.wikipedia.org/wiki/Multi-commodity_flow_problem>.

INPUT:

  • terminals – a list of pairs (s_i, t_i) or triples (s_i, t_i, w_i) representing a flow from s_i to t_i of intensity w_i. When the pairs are of size 2, a intensity of 1 is assumed.
  • integer (boolean) – whether to require an integer multicommodity flow
  • use_edge_labels (boolean) – whether to consider the label of edges as numerical values representing a capacity. If set to False, a capacity of 1 is assumed
  • vertex_bound (boolean) – whether to require that a vertex can stand at most 1 commodity of flow through it of intensity 1. Terminals can obviously still send or receive several units of flow even though vertex_bound is set to True, as this parameter is meant to represent topological properties.
  • solver – Specify a Linear Program solver to be used. If set to None, the default one is used. function of MixedIntegerLinearProgram. See the documentation of MixedIntegerLinearProgram.solve for more informations.
  • verbose (integer) – sets the level of verbosity. Set to 0 by default (quiet).

ALGORITHM:

(Mixed Integer) Linear Program, depending on the value of integer.

EXAMPLE:

An easy way to obtain a satisfiable multiflow is to compute a matching in a graph, and to consider the paired vertices as terminals

sage: g = graphs.PetersenGraph() 
sage: matching = [(u,v) for u,v,_ in g.matching()]
sage: h = g.multicommodity_flow(matching)
sage: len(h)
5 

We could also have considered g as symmetric and computed the multiflow in this version instead. In this case, however edges can be used in both directions at the same time:

sage: h = DiGraph(g).multicommodity_flow(matching)
sage: len(h)
5 

An exception is raised when the problem has no solution

sage: h = g.multicommodity_flow([(u,v,3) for u,v in matching])
... 
ValueError: The multiflow problem has no solution 
multiple_edges(new=None, to_undirected=False, labels=True)

Returns any multiple edges in the (di)graph.

EXAMPLES:

sage: G = Graph(multiedges=True,sparse=True); G
Multi-graph on 0 vertices
sage: G.has_multiple_edges()
False
sage: G.allows_multiple_edges()
True
sage: G.add_edges([(0,1)]*3)
sage: G.has_multiple_edges()
True
sage: G.multiple_edges()
[(0, 1, None), (0, 1, None), (0, 1, None)]
sage: G.allow_multiple_edges(False); G
Graph on 2 vertices
sage: G.has_multiple_edges()
False
sage: G.edges()
[(0, 1, None)]

sage: D = DiGraph(multiedges=True,sparse=True); D
Multi-digraph on 0 vertices
sage: D.has_multiple_edges()
False
sage: D.allows_multiple_edges()
True
sage: D.add_edges([(0,1)]*3)
sage: D.has_multiple_edges()
True
sage: D.multiple_edges()
[(0, 1, None), (0, 1, None), (0, 1, None)]
sage: D.allow_multiple_edges(False); D
Digraph on 2 vertices
sage: D.has_multiple_edges()
False
sage: D.edges()
[(0, 1, None)]

sage: G = DiGraph({1:{2: 'h'}, 2:{1:'g'}},sparse=True)
sage: G.has_multiple_edges()
False
sage: G.has_multiple_edges(to_undirected=True)
True
sage: G.multiple_edges()
[]
sage: G.multiple_edges(to_undirected=True)
[(1, 2, 'h'), (2, 1, 'g')]
multiway_cut(vertices, value_only=False, use_edge_labels=False, **kwds)

Returns a minimum edge multiway cut corresponding to the given set of vertices ( cf. http://www.d.kth.se/~viggo/wwwcompendium/node92.html ) represented by a list of edges.

A multiway cut for a vertex set S in a graph or a digraph G is a set C of edges such that any two vertices u,v in S are disconnected when removing the edges from C from G.

Such a cut is said to be minimum when its cardinality (or weight) is minimum.

INPUT:

  • vertices (iterable)– the set of vertices

  • value_only (boolean)

    • When set to True, only the value of a minimum multiway cut is returned.
    • When set to False (default), the list of edges is returned
  • use_edge_labels (boolean)
    • When set to True, computes a weighted minimum cut where each edge has a weight defined by its label. ( if an edge has no label, 1 is assumed )
    • when set to False (default), each edge has weight 1.
  • **kwds – arguments to be passed down to the solve function of MixedIntegerLinearProgram. See the documentation of MixedIntegerLinearProgram.solve for more information.

EXAMPLES:

Of course, a multiway cut between two vertices correspond to a minimum edge cut

sage: g = graphs.PetersenGraph()
sage: g.edge_cut(0,3) == g.multiway_cut([0,3], value_only = True)
True

As Petersen’s graph is 3-regular, a minimum multiway cut between three vertices contains at most 2\times 3 edges (which could correspond to the neighborhood of 2 vertices):

sage: g.multiway_cut([0,3,9], value_only = True) == 2*3
True

In this case, though, the vertices are an independent set. If we pick instead vertices 0,9, and 7, we can save 4 edges in the multiway cut

sage: g.multiway_cut([0,7,9], value_only = True) == 2*3 - 1
True

This example, though, does not work in the directed case anymore, as it is not possible in Petersen’s graph to mutualise edges

sage: g = DiGraph(g)
sage: g.multiway_cut([0,7,9], value_only = True) == 3*3
True

Of course, a multiway cut between the whole vertex set contains all the edges of the graph:

sage: C = g.multiway_cut(g.vertices())
sage: set(C) == set(g.edges())
True
name(new=None)

INPUT:

  • new - if not None, then this becomes the new name of the (di)graph. (if new == ‘’, removes any name)

EXAMPLES:

sage: d = {0: [1,4,5], 1: [2,6], 2: [3,7], 3: [4,8], 4: [9], 5: [7, 8], 6: [8,9], 7: [9]}
sage: G = Graph(d); G
Graph on 10 vertices
sage: G.name("Petersen Graph"); G
Petersen Graph: Graph on 10 vertices
sage: G.name(new=""); G
Graph on 10 vertices
sage: G.name()
''
neighbor_iterator(vertex)

Return an iterator over neighbors of vertex.

EXAMPLES:

sage: G = graphs.CubeGraph(3)
sage: for i in G.neighbor_iterator('010'):
...    print i
011
000
110
sage: D = G.to_directed()
sage: for i in D.neighbor_iterator('010'):
...    print i
011
000
110
sage: D = DiGraph({0:[1,2], 3:[0]})
sage: list(D.neighbor_iterator(0))
[1, 2, 3]
neighbors(vertex)

Return a list of neighbors (in and out if directed) of vertex.

G[vertex] also works.

EXAMPLES:

sage: P = graphs.PetersenGraph()
sage: sorted(P.neighbors(3))
[2, 4, 8]
sage: sorted(P[4])
[0, 3, 9]
networkx_graph(copy=True)

Creates a new NetworkX graph from the Sage graph.

INPUT:

  • copy - if False, and the underlying implementation is a NetworkX graph, then the actual object itself is returned.

EXAMPLES:

sage: G = graphs.TetrahedralGraph()
sage: N = G.networkx_graph()
sage: type(N)
<class 'networkx.classes.graph.Graph'>
sage: G = graphs.TetrahedralGraph()
sage: G = Graph(G, implementation='networkx')
sage: N = G.networkx_graph()
sage: G._backend._nxg is N
False
sage: G = Graph(graphs.TetrahedralGraph(), implementation='networkx')
sage: N = G.networkx_graph(copy=False)
sage: G._backend._nxg is N
True
num_edges()

Returns the number of edges.

EXAMPLES:

sage: G = graphs.PetersenGraph()
sage: G.size()
15
num_verts()

Returns the number of vertices. Note that len(G) returns the number of vertices in G also.

EXAMPLES:

sage: G = graphs.PetersenGraph()
sage: G.order()
10
sage: G = graphs.TetrahedralGraph()
sage: len(G)
4
number_of_loops()

Returns the number of edges that are loops.

EXAMPLES:

sage: G = Graph(4, loops=True)
sage: G.add_edges( [ (0,0), (1,1), (2,2), (3,3), (2,3) ] )
sage: G.edges(labels=False)
[(0, 0), (1, 1), (2, 2), (2, 3), (3, 3)]
sage: G.number_of_loops()
4
sage: D = DiGraph(4, loops=True)
sage: D.add_edges( [ (0,0), (1,1), (2,2), (3,3), (2,3) ] )
sage: D.edges(labels=False)
[(0, 0), (1, 1), (2, 2), (2, 3), (3, 3)]
sage: D.number_of_loops()
4
order()

Returns the number of vertices. Note that len(G) returns the number of vertices in G also.

EXAMPLES:

sage: G = graphs.PetersenGraph()
sage: G.order()
10
sage: G = graphs.TetrahedralGraph()
sage: len(G)
4
periphery()

Returns the set of vertices in the periphery, i.e. whose eccentricity is equal to the diameter of the (di)graph.

In other words, the periphery is the set of vertices achieving the maximum eccentricity.

EXAMPLES:

sage: G = graphs.DiamondGraph()
sage: G.periphery()
[0, 3]
sage: P = graphs.PetersenGraph()
sage: P.subgraph(P.periphery()) == P
True
sage: S = graphs.StarGraph(19)
sage: S.periphery()
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]
sage: G = Graph()
sage: G.periphery()
[]
sage: G.add_vertex()
sage: G.periphery()
[0]
plot(*args, **kwds)

Returns a graphics object representing the (di)graph. See also the sage.graphs.graph_latex module for ways to use \mbox{\rm\LaTeX} to produce an image of a graph.

INPUT:

  • pos - an optional positioning dictionary

  • layout - what kind of layout to use, takes precedence over pos

    • ‘circular’ – plots the graph with vertices evenly distributed on a circle
    • ‘spring’ - uses the traditional spring layout, using the graph’s current positions as initial positions
    • ‘tree’ - the (di)graph must be a tree. One can specify the root of the tree using the keyword tree_root, otherwise a root will be selected at random. Then the tree will be plotted in levels, depending on minimum distance for the root.
  • vertex_labels - whether to print vertex labels

  • edge_labels - whether to print edge labels. By default, False, but if True, the result of str(l) is printed on the edge for each label l. Labels equal to None are not printed (to set edge labels, see set_edge_label).

  • vertex_size - size of vertices displayed

  • vertex_shape - the shape to draw the vertices (Not available for multiedge digraphs.)

  • graph_border - whether to include a box around the graph

  • vertex_colors - optional dictionary to specify vertex colors: each key is a color recognizable by matplotlib, and each corresponding entry is a list of vertices. If a vertex is not listed, it looks invisible on the resulting plot (it doesn’t get drawn).

  • edge_colors - a dictionary specifying edge colors: each key is a color recognized by matplotlib, and each entry is a list of edges.

  • partition - a partition of the vertex set. if specified, plot will show each cell in a different color. vertex_colors takes precedence.

  • scaling_term – default is 0.05. if vertices are getting chopped off, increase; if graph is too small, decrease. should be positive, but values much bigger than 1/8 won’t be useful unless the vertices are huge

  • talk - if true, prints large vertices with white backgrounds so that labels are legible on slides

  • iterations - how many iterations of the spring layout algorithm to go through, if applicable

  • color_by_label - if True, color edges by their labels

  • heights - if specified, this is a dictionary from a set of floating point heights to a set of vertices

  • edge_style - keyword arguments passed into the edge-drawing routine. This currently only works for directed graphs, since we pass off the undirected graph to networkx

  • tree_root - a vertex of the tree to be used as the root for the layout=”tree” option. If no root is specified, then one is chosen at random. Ignored unless layout=’tree’.

  • tree_orientation - “up” or “down” (default is “down”). If “up” (resp., “down”), then the root of the tree will appear on the bottom (resp., top) and the tree will grow upwards (resp. downwards). Ignored unless layout=’tree’.

  • save_pos - save position computed during plotting

EXAMPLES:

sage: from sage.graphs.graph_plot import graphplot_options
sage: list(sorted(graphplot_options.iteritems()))
[...]

sage: from math import sin, cos, pi
sage: P = graphs.PetersenGraph()
sage: d = {'#FF0000':[0,5], '#FF9900':[1,6], '#FFFF00':[2,7], '#00FF00':[3,8], '#0000FF':[4,9]}
sage: pos_dict = {}
sage: for i in range(5):
...    x = float(cos(pi/2 + ((2*pi)/5)*i))
...    y = float(sin(pi/2 + ((2*pi)/5)*i))
...    pos_dict[i] = [x,y]
...
sage: for i in range(10)[5:]:
...    x = float(0.5*cos(pi/2 + ((2*pi)/5)*i))
...    y = float(0.5*sin(pi/2 + ((2*pi)/5)*i))
...    pos_dict[i] = [x,y]
...
sage: pl = P.plot(pos=pos_dict, vertex_colors=d)
sage: pl.show()
sage: C = graphs.CubeGraph(8)
sage: P = C.plot(vertex_labels=False, vertex_size=0, graph_border=True)
sage: P.show()
sage: G = graphs.HeawoodGraph()
sage: for u,v,l in G.edges():
...    G.set_edge_label(u,v,'(' + str(u) + ',' + str(v) + ')')
sage: G.plot(edge_labels=True).show()
sage: D = DiGraph( { 0: [1, 10, 19], 1: [8, 2], 2: [3, 6], 3: [19, 4], 4: [17, 5], 5: [6, 15], 6: [7], 7: [8, 14], 8: [9], 9: [10, 13], 10: [11], 11: [12, 18], 12: [16, 13], 13: [14], 14: [15], 15: [16], 16: [17], 17: [18], 18: [19], 19: []} , sparse=True)
sage: for u,v,l in D.edges():
...    D.set_edge_label(u,v,'(' + str(u) + ',' + str(v) + ')')
sage: D.plot(edge_labels=True, layout='circular').show()
sage: from sage.plot.colors import rainbow
sage: C = graphs.CubeGraph(5)
sage: R = rainbow(5)
sage: edge_colors = {}
sage: for i in range(5):
...    edge_colors[R[i]] = []
sage: for u,v,l in C.edges():
...    for i in range(5):
...        if u[i] != v[i]:
...            edge_colors[R[i]].append((u,v,l))
sage: C.plot(vertex_labels=False, vertex_size=0, edge_colors=edge_colors).show()
sage: D = graphs.DodecahedralGraph()
sage: Pi = [[6,5,15,14,7],[16,13,8,2,4],[12,17,9,3,1],[0,19,18,10,11]]
sage: D.show(partition=Pi)
sage: G = graphs.PetersenGraph()
sage: G.allow_loops(True)
sage: G.add_edge(0,0)
sage: G.show()
sage: D = DiGraph({0:[0,1], 1:[2], 2:[3]}, loops=True)
sage: D.show()
sage: D.show(edge_colors={(0,1,0):[(0,1,None),(1,2,None)],(0,0,0):[(2,3,None)]}) 
sage: pos = {0:[0.0, 1.5], 1:[-0.8, 0.3], 2:[-0.6, -0.8], 3:[0.6, -0.8], 4:[0.8, 0.3]}
sage: g = Graph({0:[1], 1:[2], 2:[3], 3:[4], 4:[0]})
sage: g.plot(pos=pos, layout='spring', iterations=0)
sage: G = Graph()
sage: P = G.plot()
sage: P.axes()
False
sage: G = DiGraph()
sage: P = G.plot()
sage: P.axes()
False
sage: G = graphs.PetersenGraph()
sage: G.get_pos()
{0: (6.12..., 1.0...),
 1: (-0.95..., 0.30...),
 2: (-0.58..., -0.80...),
 3: (0.58..., -0.80...),
 4: (0.95..., 0.30...),
 5: (1.53..., 0.5...),
 6: (-0.47..., 0.15...),
 7: (-0.29..., -0.40...),
 8: (0.29..., -0.40...),
 9: (0.47..., 0.15...)}
sage: P = G.plot(save_pos=True, layout='spring')

The following illustrates the format of a position dictionary,
but due to numerical noise we do not check the values themselves.

sage: G.get_pos()
{0: [..., ...], 
 1: [..., ...], 
 2: [..., ...], 
 3: [..., ...], 
 4: [..., ...], 
 5: [..., ...], 
 6: [..., ...], 
 7: [..., ...], 
 8: [..., ...], 
 9: [..., ...]}
sage: T = list(graphs.trees(7))
sage: t = T[3]
sage: t.plot(heights={0:[0], 1:[4,5,1], 2:[2], 3:[3,6]})
sage: T = list(graphs.trees(7))
sage: t = T[3]
sage: t.plot(heights={0:[0], 1:[4,5,1], 2:[2], 3:[3,6]})
sage: t.set_edge_label(0,1,-7)
sage: t.set_edge_label(0,5,3)
sage: t.set_edge_label(0,5,99)
sage: t.set_edge_label(1,2,1000)
sage: t.set_edge_label(3,2,'spam')
sage: t.set_edge_label(2,6,3/2)
sage: t.set_edge_label(0,4,66)
sage: t.plot(heights={0:[0], 1:[4,5,1], 2:[2], 3:[3,6]}, edge_labels=True)
sage: T = list(graphs.trees(7))
sage: t = T[3]
sage: t.plot(layout='tree')
sage: t = DiGraph('JCC???@A??GO??CO??GO??')
sage: t.plot(layout='tree', tree_root=0, tree_orientation="up")
sage: D = DiGraph({0:[1,2,3], 2:[1,4], 3:[0]})
sage: D.plot()

sage: D = DiGraph(multiedges=True,sparse=True)
sage: for i in range(5):
...     D.add_edge((i,i+1,'a'))
...     D.add_edge((i,i-1,'b'))
sage: D.plot(edge_labels=True,edge_colors=D._color_by_label())

sage: g = Graph({}, loops=True, multiedges=True,sparse=True)
sage: g.add_edges([(0,0,'a'),(0,0,'b'),(0,1,'c'),(0,1,'d'),
...     (0,1,'e'),(0,1,'f'),(0,1,'f'),(2,1,'g'),(2,2,'h')])
sage: g.plot(edge_labels=True, color_by_label=True, edge_style='dashed')
sage: S = SupersingularModule(389)
sage: H = S.hecke_matrix(2)
sage: D = DiGraph(H,sparse=True)
sage: P = D.plot()
sage: G=Graph({'a':['a','b','b','b','e'],'b':['c','d','e'],'c':['c','d','d','d'],'d':['e']},sparse=True)
sage: G.show(pos={'a':[0,1],'b':[1,1],'c':[2,0],'d':[1,0],'e':[0,0]})
plot3d(bgcolor=(1, 1, 1), vertex_colors=None, vertex_size=0.059999999999999998, edge_colors=None, edge_size=0.02, edge_size2=0.032500000000000001, pos3d=None, color_by_label=False, engine='jmol', **kwds)

Plot a graph in three dimensions. See also the sage.graphs.graph_latex module for ways to use \mbox{\rm\LaTeX} to produce an image of a graph.

INPUT:

  • bgcolor - rgb tuple (default: (1,1,1))
  • vertex_size - float (default: 0.06)
  • vertex_colors - optional dictionary to specify vertex colors: each key is a color recognizable by tachyon (rgb tuple (default: (1,0,0))), and each corresponding entry is a list of vertices. If a vertex is not listed, it looks invisible on the resulting plot (it doesn’t get drawn).
  • edge_colors - a dictionary specifying edge colors: each key is a color recognized by tachyon ( default: (0,0,0) ), and each entry is a list of edges.
  • edge_size - float (default: 0.02)
  • edge_size2 - float (default: 0.0325), used for Tachyon sleeves
  • pos3d - a position dictionary for the vertices
  • layout, iterations, ... - layout options; see layout()
  • engine - which renderer to use. Options:
    • 'jmol' - default
    • 'tachyon'
  • xres - resolution
  • yres - resolution
  • **kwds - passed on to the rendering engine

EXAMPLES:

sage: G = graphs.CubeGraph(5)
sage: G.plot3d(iterations=500, edge_size=None, vertex_size=0.04) # long time

We plot a fairly complicated Cayley graph:

sage: A5 = AlternatingGroup(5); A5
Alternating group of order 5!/2 as a permutation group
sage: G = A5.cayley_graph()
sage: G.plot3d(vertex_size=0.03, edge_size=0.01, vertex_colors={(1,1,1):G.vertices()}, bgcolor=(0,0,0), color_by_label=True, iterations=200) # long time

Some Tachyon examples:

sage: D = graphs.DodecahedralGraph()
sage: P3D = D.plot3d(engine='tachyon')
sage: P3D.show() # long time
sage: G = graphs.PetersenGraph()
sage: G.plot3d(engine='tachyon', vertex_colors={(0,0,1):G.vertices()}).show() # long time
sage: C = graphs.CubeGraph(4)
sage: C.plot3d(engine='tachyon', edge_colors={(0,1,0):C.edges()}, vertex_colors={(1,1,1):C.vertices()}, bgcolor=(0,0,0)).show() # long time
sage: K = graphs.CompleteGraph(3)
sage: K.plot3d(engine='tachyon', edge_colors={(1,0,0):[(0,1,None)], (0,1,0):[(0,2,None)], (0,0,1):[(1,2,None)]}).show() # long time

A directed version of the dodecahedron

sage: D = DiGraph( { 0: [1, 10, 19], 1: [8, 2], 2: [3, 6], 3: [19, 4], 4: [17, 5], 5: [6, 15], 6: [7], 7: [8, 14], 8: [9], 9: [10, 13], 10: [11], 11: [12, 18], 12: [16, 13], 13: [14], 14: [15], 15: [16], 16: [17], 17: [18], 18: [19], 19: []} )
sage: D.plot3d().show() # long time
sage: P = graphs.PetersenGraph().to_directed()
sage: from sage.plot.colors import rainbow
sage: edges = P.edges()
sage: R = rainbow(len(edges), 'rgbtuple')
sage: edge_colors = {}
sage: for i in range(len(edges)):
...       edge_colors[R[i]] = [edges[i]]
sage: P.plot3d(engine='tachyon', edge_colors=edge_colors).show() # long time
sage: G=Graph({'a':['a','b','b','b','e'],'b':['c','d','e'],'c':['c','d','d','d'],'d':['e']},sparse=True)
sage: G.show3d()
...
NotImplementedError: 3D plotting of multiple edges or loops not implemented.
radius()

Returns the radius of the (di)graph.

The radius is defined to be the minimum eccentricity of any vertex, where the eccentricity is the maximum distance to any other vertex.

EXAMPLES: The more symmetric a graph is, the smaller (diameter - radius) is.

sage: G = graphs.BarbellGraph(9, 3)
sage: G.radius()
3
sage: G.diameter()
6
sage: G = graphs.OctahedralGraph()
sage: G.radius()
2
sage: G.diameter()
2
random_edge(**kwds)

Returns a random edge of self.

INPUT:

  • **kwds - arguments to be passed down to the edge_iterator method.

EXAMPLE:

The returned value is an edge of self:

sage: g = graphs.PetersenGraph()
sage: u,v = g.random_edge(labels=False)
sage: g.has_edge(u,v)
True

As the edges() method would, this function returns by default a triple (u,v,l) of values, in which l is the label of edge (u,v):

sage: g.random_edge()
(...,...,...)
random_subgraph(p, inplace=False)

Return a random subgraph that contains each vertex with prob. p.

EXAMPLES:

sage: P = graphs.PetersenGraph()
sage: P.random_subgraph(.25)
Subgraph of (Petersen graph): Graph on 4 vertices
random_vertex(**kwds)

Returns a random vertex of self.

INPUT:

  • **kwds - arguments to be passed down to the vertex_iterator method.

EXAMPLE:

The returned value is a vertex of self:

sage: g = graphs.PetersenGraph()
sage: v = g.random_vertex()
sage: v in g
True
relabel(perm=None, inplace=True, return_map=False)

Uses a dictionary, list, or permutation to relabel the (di)graph. If perm is a dictionary d, each old vertex v is a key in the dictionary, and its new label is d[v].

If perm is a list, we think of it as a map i \mapsto perm[i] with the assumption that the vertices are \{0,1,...,n-1\}.

If perm is a permutation, the permutation is simply applied to the graph, under the assumption that the vertices are \{0,1,...,n-1\}. The permutation acts on the set \{1,2,...,n\}, where we think of n = 0.

If no arguments are provided, the graph is relabeled to be on the vertices \{0,1,...,n-1\}.

INPUT:

  • inplace - default is True. If True, modifies the graph and returns nothing. If False, returns a relabeled copy of the graph.
  • return_map - default is False. If True, returns the dictionary representing the map.

EXAMPLES:

sage: G = graphs.PathGraph(3)
sage: G.am()
[0 1 0]
[1 0 1]
[0 1 0]

Relabeling using a dictionary:

sage: G.relabel({1:2,2:1}, inplace=False).am()
[0 0 1]
[0 0 1]
[1 1 0]

Relabeling using a list:

sage: G.relabel([0,2,1], inplace=False).am()
[0 0 1]
[0 0 1]
[1 1 0]

Relabeling using a Sage permutation:

sage: from sage.groups.perm_gps.permgroup_named import SymmetricGroup
sage: S = SymmetricGroup(3)
sage: gamma = S('(1,2)')
sage: G.relabel(gamma, inplace=False).am()
[0 0 1]
[0 0 1]
[1 1 0]

Relabeling to simpler labels:

sage: G = graphs.CubeGraph(3)
sage: G.vertices()
['000', '001', '010', '011', '100', '101', '110', '111']
sage: G.relabel()
sage: G.vertices()
[0, 1, 2, 3, 4, 5, 6, 7]
sage: G = graphs.CubeGraph(3)
sage: expecting = {'000': 0, '001': 1, '010': 2, '011': 3, '100': 4, '101': 5, '110': 6, '111': 7}
sage: G.relabel(return_map=True) == expecting
True

TESTS:

sage: P = Graph(graphs.PetersenGraph())
sage: P.delete_edge([0,1])
sage: P.add_edge((4,5))
sage: P.add_edge((2,6))
sage: P.delete_vertices([0,1])
sage: P.relabel()

The attributes are properly updated too

sage: G = graphs.PathGraph(5)
sage: G.set_vertices({0: 'before', 1: 'delete', 2: 'after'})
sage: G.set_boundary([1,2,3])
sage: G.delete_vertex(1)
sage: G.relabel()
sage: G.get_vertices()
{0: 'before', 1: 'after', 2: None, 3: None}
sage: G.get_boundary()
[1, 2]
sage: G.get_pos()
{0: (0, 0), 1: (2, 0), 2: (3, 0), 3: (4, 0)}
remove_loops(vertices=None)

Removes loops on vertices in vertices. If vertices is None, removes all loops.

EXAMPLE

sage: G = Graph(4, loops=True)
sage: G.add_edges( [ (0,0), (1,1), (2,2), (3,3), (2,3) ] )
sage: G.edges(labels=False)
[(0, 0), (1, 1), (2, 2), (2, 3), (3, 3)]
sage: G.remove_loops()
sage: G.edges(labels=False)
[(2, 3)]
sage: G.allows_loops()
True
sage: G.has_loops()
False

sage: D = DiGraph(4, loops=True)
sage: D.add_edges( [ (0,0), (1,1), (2,2), (3,3), (2,3) ] )
sage: D.edges(labels=False)
[(0, 0), (1, 1), (2, 2), (2, 3), (3, 3)]
sage: D.remove_loops()
sage: D.edges(labels=False)
[(2, 3)]
sage: D.allows_loops()
True
sage: D.has_loops()
False
remove_multiple_edges()

Removes all multiple edges, retaining one edge for each.

EXAMPLES:

sage: G = Graph(multiedges=True, sparse=True)
sage: G.add_edges( [ (0,1), (0,1), (0,1), (0,1), (1,2) ] )
sage: G.edges(labels=False)
[(0, 1), (0, 1), (0, 1), (0, 1), (1, 2)]
sage: G.remove_multiple_edges()
sage: G.edges(labels=False)
[(0, 1), (1, 2)]
sage: D = DiGraph(multiedges=True, sparse=True)
sage: D.add_edges( [ (0,1,1), (0,1,2), (0,1,3), (0,1,4), (1,2) ] )
sage: D.edges(labels=False)
[(0, 1), (0, 1), (0, 1), (0, 1), (1, 2)]
sage: D.remove_multiple_edges()
sage: D.edges(labels=False)
[(0, 1), (1, 2)]
set_boundary(boundary)

Sets the boundary of the (di)graph.

EXAMPLES:

sage: G = graphs.PetersenGraph()
sage: G.set_boundary([0,1,2,3,4])
sage: G.get_boundary()
[0, 1, 2, 3, 4]
sage: G.set_boundary((1..4))
sage: G.get_boundary()
[1, 2, 3, 4]
set_edge_label(u, v, l)

Set the edge label of a given edge.

Note

There can be only one edge from u to v for this to make sense. Otherwise, an error is raised.

INPUT:

  • u, v - the vertices (and direction if digraph) of the edge
  • l - the new label

EXAMPLES:

sage: SD = DiGraph( { 1:[18,2], 2:[5,3], 3:[4,6], 4:[7,2], 5:[4], 6:[13,12], 7:[18,8,10], 8:[6,9,10], 9:[6], 10:[11,13], 11:[12], 12:[13], 13:[17,14], 14:[16,15], 15:[2], 16:[13], 17:[15,13], 18:[13] }, sparse=True)
sage: SD.set_edge_label(1, 18, 'discrete')
sage: SD.set_edge_label(4, 7, 'discrete')
sage: SD.set_edge_label(2, 5, 'h = 0')
sage: SD.set_edge_label(7, 18, 'h = 0')
sage: SD.set_edge_label(7, 10, 'aut')
sage: SD.set_edge_label(8, 10, 'aut')
sage: SD.set_edge_label(8, 9, 'label')
sage: SD.set_edge_label(8, 6, 'no label')
sage: SD.set_edge_label(13, 17, 'k > h')
sage: SD.set_edge_label(13, 14, 'k = h')
sage: SD.set_edge_label(17, 15, 'v_k finite')
sage: SD.set_edge_label(14, 15, 'v_k m.c.r.')
sage: posn = {1:[ 3,-3],  2:[0,2],  3:[0, 13],  4:[3,9],  5:[3,3],  6:[16, 13], 7:[6,1],  8:[6,6],  9:[6,11], 10:[9,1], 11:[10,6], 12:[13,6], 13:[16,2], 14:[10,-6], 15:[0,-10], 16:[14,-6], 17:[16,-10], 18:[6,-4]}
sage: SD.plot(pos=posn, vertex_size=400, vertex_colors={'#FFFFFF':range(1,19)}, edge_labels=True).show() # long time
sage: G = graphs.HeawoodGraph()
sage: for u,v,l in G.edges():
...    G.set_edge_label(u,v,'(' + str(u) + ',' + str(v) + ')')
sage: G.edges()
    [(0, 1, '(0,1)'),
     (0, 5, '(0,5)'),
     (0, 13, '(0,13)'),
     ...
     (11, 12, '(11,12)'),
     (12, 13, '(12,13)')]
sage: g = Graph({0: [0,1,1,2]}, loops=True, multiedges=True, sparse=True)
sage: g.set_edge_label(0,0,'test')
sage: g.edges()
[(0, 0, 'test'), (0, 1, None), (0, 1, None), (0, 2, None)]
sage: g.add_edge(0,0,'test2')
sage: g.set_edge_label(0,0,'test3')
...
RuntimeError: Cannot set edge label, since there are multiple edges from 0 to 0.
sage: dg = DiGraph({0 : [1], 1 : [0]}, sparse=True)
sage: dg.set_edge_label(0,1,5)
sage: dg.set_edge_label(1,0,9)
sage: dg.outgoing_edges(1)
[(1, 0, 9)]
sage: dg.incoming_edges(1)
[(0, 1, 5)]
sage: dg.outgoing_edges(0)
[(0, 1, 5)]
sage: dg.incoming_edges(0)
[(1, 0, 9)]
sage: G = Graph({0:{1:1}}, sparse=True)
sage: G.num_edges()
1
sage: G.set_edge_label(0,1,1)
sage: G.num_edges()
1
set_embedding(embedding)

Sets a combinatorial embedding dictionary to _embedding attribute. Dictionary is organized with vertex labels as keys and a list of each vertex’s neighbors in clockwise order.

Dictionary is error-checked for validity.

INPUT:

  • embedding - a dictionary

EXAMPLES:

sage: G = graphs.PetersenGraph()
sage: G.set_embedding({0: [1, 5, 4], 1: [0, 2, 6], 2: [1, 3, 7], 3: [8, 2, 4], 4: [0, 9, 3], 5: [0, 8, 7], 6: [8, 1, 9], 7: [9, 2, 5], 8: [3, 5, 6], 9: [4, 6, 7]})
sage: G.set_embedding({'s': [1, 5, 4], 1: [0, 2, 6], 2: [1, 3, 7], 3: [8, 2, 4], 4: [0, 9, 3], 5: [0, 8, 7], 6: [8, 1, 9], 7: [9, 2, 5], 8: [3, 5, 6], 9: [4, 6, 7]})
...
Exception: embedding is not valid for Petersen graph
set_latex_options(**kwds)

Sets multiple options for rendering a graph with LaTeX.

INPUTS:

  • kwds - any number of option/value pairs to set many graph latex options at once (a variable number, in any order). Existing values are overwritten, new values are added. Existing values can be cleared by setting the value to None. Possible options are documented at sage.graphs.graph_latex.GraphLatex.set_option().

This method is a convenience for setting the options of a graph directly on an instance of the graph. For details, or finer control, see the GraphLatex class.

EXAMPLES:

sage: g = graphs.PetersenGraph()
sage: g.set_latex_options(tkz_style = 'Welsh')
sage: opts = g.latex_options()
sage: opts.get_option('tkz_style')
'Welsh'
set_planar_positions(test=False, **layout_options)

Compute a planar layout for self using Schnyder’s algorithm, and save it as default layout.

EXAMPLES:

sage: g = graphs.CycleGraph(7)
sage: g.set_planar_positions(test=True)
True

This method is deprecated. Please use instead:

sage: g.layout(layout = “planar”, save_pos = True) {0: [1, 1], 1: [2, 2], 2: [3, 2], 3: [1, 4], 4: [5, 1], 5: [0, 5], 6: [1, 0]}
set_pos(pos, dim=2)

Sets the position dictionary, a dictionary specifying the coordinates of each vertex.

EXAMPLES: Note that set_pos will allow you to do ridiculous things, which will not blow up until plotting:

sage: G = graphs.PetersenGraph()
sage: G.get_pos()
{0: (..., ...),
 ...
 9: (..., ...)}
sage: G.set_pos('spam')
sage: P = G.plot()
...
TypeError: string indices must be integers, not str
set_vertex(vertex, object)

Associate an arbitrary object with a vertex.

INPUT:

  • vertex - which vertex
  • object - object to associate to vertex

EXAMPLES:

sage: T = graphs.TetrahedralGraph()
sage: T.vertices()
[0, 1, 2, 3]
sage: T.set_vertex(1, graphs.FlowerSnark())
sage: T.get_vertex(1)
Flower Snark: Graph on 20 vertices
set_vertices(vertex_dict)

Associate arbitrary objects with each vertex, via an association dictionary.

INPUT:

  • vertex_dict - the association dictionary

EXAMPLES:

sage: d = {0 : graphs.DodecahedralGraph(), 1 : graphs.FlowerSnark(), 2 : graphs.MoebiusKantorGraph(), 3 : graphs.PetersenGraph() }
sage: d[2]
Moebius-Kantor Graph: Graph on 16 vertices
sage: T = graphs.TetrahedralGraph()
sage: T.vertices()
[0, 1, 2, 3]
sage: T.set_vertices(d)
sage: T.get_vertex(1)
Flower Snark: Graph on 20 vertices
shortest_path(u, v, by_weight=False, bidirectional=True)

Returns a list of vertices representing some shortest path from u to v: if there is no path from u to v, the list is empty.

INPUT:

  • by_weight - if False, uses a breadth first search. If True, takes edge weightings into account, using Dijkstra’s algorithm.
  • bidirectional - if True, the algorithm will expand vertices from u and v at the same time, making two spheres of half the usual radius. This generally doubles the speed (consider the total volume in each case).

EXAMPLES:

sage: D = graphs.DodecahedralGraph()
sage: D.shortest_path(4, 9)
[4, 17, 16, 12, 13, 9]
sage: D.shortest_path(5, 5)
[5]
sage: D.delete_edges(D.edges_incident(13))
sage: D.shortest_path(13, 4)
[]
sage: G = Graph( { 0: [1], 1: [2], 2: [3], 3: [4], 4: [0] })
sage: G.plot(edge_labels=True).show() # long time
sage: G.shortest_path(0, 3)
[0, 4, 3]
sage: G = Graph( { 0: {1: 1}, 1: {2: 1}, 2: {3: 1}, 3: {4: 2}, 4: {0: 2} }, sparse = True)
sage: G.shortest_path(0, 3, by_weight=True)
[0, 1, 2, 3]
shortest_path_all_pairs(by_weight=True, default_weight=1)

Uses the Floyd-Warshall algorithm to find a shortest weighted path for each pair of vertices.

The weights (labels) on the vertices can be anything that can be compared and can be summed.

INPUT:

  • by_weight - If False, figure distances by the numbers of edges.
  • default_weight - (defaults to 1) The default weight to assign edges that don’t have a weight (i.e., a label).

OUTPUT: A tuple (dist, pred). They are both dicts of dicts. The first indicates the length dist[u][v] of the shortest weighted path from u to v. The second is more complicated- it indicates the predecessor pred[u][v] of v in the shortest path from u to v.

EXAMPLES:

sage: G = Graph( { 0: {1: 1}, 1: {2: 1}, 2: {3: 1}, 3: {4: 2}, 4: {0: 2} }, sparse=True )
sage: G.plot(edge_labels=True).show() # long time
sage: dist, pred = G.shortest_path_all_pairs()
sage: dist
{0: {0: 0, 1: 1, 2: 2, 3: 3, 4: 2}, 1: {0: 1, 1: 0, 2: 1, 3: 2, 4: 3}, 2: {0: 2, 1: 1, 2: 0, 3: 1, 4: 3}, 3: {0: 3, 1: 2, 2: 1, 3: 0, 4: 2}, 4: {0: 2, 1: 3, 2: 3, 3: 2, 4: 0}}
sage: pred
{0: {0: None, 1: 0, 2: 1, 3: 2, 4: 0}, 1: {0: 1, 1: None, 2: 1, 3: 2, 4: 0}, 2: {0: 1, 1: 2, 2: None, 3: 2, 4: 3}, 3: {0: 1, 1: 2, 2: 3, 3: None, 4: 3}, 4: {0: 4, 1: 0, 2: 3, 3: 4, 4: None}}
sage: pred[0]
{0: None, 1: 0, 2: 1, 3: 2, 4: 0}

So for example the shortest weighted path from 0 to 3 is obtained as follows. The predecessor of 3 is pred[0][3] == 2, the predecessor of 2 is pred[0][2] == 1, and the predecessor of 1 is pred[0][1] == 0.

sage: G = Graph( { 0: {1:None}, 1: {2:None}, 2: {3: 1}, 3: {4: 2}, 4: {0: 2} }, sparse=True )
sage: G.shortest_path_all_pairs(by_weight=False)
({0: {0: 0, 1: 1, 2: 2, 3: 2, 4: 1},
1: {0: 1, 1: 0, 2: 1, 3: 2, 4: 2},
2: {0: 2, 1: 1, 2: 0, 3: 1, 4: 2},
3: {0: 2, 1: 2, 2: 1, 3: 0, 4: 1},
4: {0: 1, 1: 2, 2: 2, 3: 1, 4: 0}},
{0: {0: None, 1: 0, 2: 1, 3: 4, 4: 0},
1: {0: 1, 1: None, 2: 1, 3: 2, 4: 0},
2: {0: 1, 1: 2, 2: None, 3: 2, 4: 3},
3: {0: 4, 1: 2, 2: 3, 3: None, 4: 3},
4: {0: 4, 1: 0, 2: 3, 3: 4, 4: None}})
sage: G.shortest_path_all_pairs()
({0: {0: 0, 1: 1, 2: 2, 3: 3, 4: 2},
1: {0: 1, 1: 0, 2: 1, 3: 2, 4: 3},
2: {0: 2, 1: 1, 2: 0, 3: 1, 4: 3},
3: {0: 3, 1: 2, 2: 1, 3: 0, 4: 2},
4: {0: 2, 1: 3, 2: 3, 3: 2, 4: 0}},
{0: {0: None, 1: 0, 2: 1, 3: 2, 4: 0},
1: {0: 1, 1: None, 2: 1, 3: 2, 4: 0},
2: {0: 1, 1: 2, 2: None, 3: 2, 4: 3},
3: {0: 1, 1: 2, 2: 3, 3: None, 4: 3},
4: {0: 4, 1: 0, 2: 3, 3: 4, 4: None}})
sage: G.shortest_path_all_pairs(default_weight=200)
({0: {0: 0, 1: 200, 2: 5, 3: 4, 4: 2},
1: {0: 200, 1: 0, 2: 200, 3: 201, 4: 202},
2: {0: 5, 1: 200, 2: 0, 3: 1, 4: 3},
3: {0: 4, 1: 201, 2: 1, 3: 0, 4: 2},
4: {0: 2, 1: 202, 2: 3, 3: 2, 4: 0}},
{0: {0: None, 1: 0, 2: 3, 3: 4, 4: 0},
1: {0: 1, 1: None, 2: 1, 3: 2, 4: 0},
2: {0: 4, 1: 2, 2: None, 3: 2, 4: 3},
3: {0: 4, 1: 2, 2: 3, 3: None, 4: 3},
4: {0: 4, 1: 0, 2: 3, 3: 4, 4: None}})
shortest_path_length(u, v, by_weight=False, bidirectional=True, weight_sum=None)

Returns the minimal length of paths from u to v: if there is no path from u to v, returns Infinity.

INPUT:

  • by_weight - if False, uses a breadth first search. If True, takes edge weightings into account, using Dijkstra’s algorithm.
  • bidirectional - if True, the algorithm will expand vertices from u and v at the same time, making two spheres of half the usual radius. This generally doubles the speed (consider the total volume in each case).
  • weight_sum - if False, returns the number of edges in the path. If True, returns the sum of the weights of these edges. Default behavior is to have the same value as by_weight.

EXAMPLES:

sage: D = graphs.DodecahedralGraph()
sage: D.shortest_path_length(4, 9)
5
sage: D.shortest_path_length(5, 5)
0
sage: D.delete_edges(D.edges_incident(13))
sage: D.shortest_path_length(13, 4)
+Infinity
sage: G = Graph( { 0: {1: 1}, 1: {2: 1}, 2: {3: 1}, 3: {4: 2}, 4: {0: 2} }, sparse = True)
sage: G.plot(edge_labels=True).show() # long time
sage: G.shortest_path_length(0, 3)
2
sage: G.shortest_path_length(0, 3, by_weight=True)
3
shortest_path_lengths(u, by_weight=False, weight_sums=None)

Returns a dictionary of shortest path lengths keyed by targets that are connected by a path from u.

INPUT:

  • by_weight - if False, uses a breadth first search. If True, takes edge weightings into account, using Dijkstra’s algorithm.
  • weight_sums - if False, returns the number of edges in each path. If True, returns the sum of the weights of these edges. Default behavior is to have the same value as by_weight.

EXAMPLES:

sage: D = graphs.DodecahedralGraph()
sage: D.shortest_path_lengths(0)
{0: 0, 1: 1, 2: 2, 3: 2, 4: 3, 5: 4, 6: 3, 7: 3, 8: 2, 9: 2, 10: 1, 11: 2, 12: 3, 13: 3, 14: 4, 15: 5, 16: 4, 17: 3, 18: 2, 19: 1}
sage: G = Graph( { 0: {1: 1}, 1: {2: 1}, 2: {3: 1}, 3: {4: 2}, 4: {0: 2} }, sparse=True )
sage: G.plot(edge_labels=True).show() # long time
sage: G.shortest_path_lengths(0, by_weight=True)
{0: 0, 1: 1, 2: 2, 3: 3, 4: 2}
shortest_paths(u, by_weight=False, cutoff=None)

Returns a dictionary d of shortest paths d[v] from u to v, for each vertex v connected by a path from u.

INPUT:

  • by_weight - if False, uses a breadth first search. If True, uses Dijkstra’s algorithm to find the shortest paths by weight.
  • cutoff - integer depth to stop search. Ignored if by_weight is True.

EXAMPLES:

sage: D = graphs.DodecahedralGraph()
sage: D.shortest_paths(0)
{0: [0], 1: [0, 1], 2: [0, 1, 2], 3: [0, 19, 3], 4: [0, 19, 3, 4], 5: [0, 1, 2, 6, 5], 6: [0, 1, 2, 6], 7: [0, 1, 8, 7], 8: [0, 1, 8], 9: [0, 10, 9], 10: [0, 10], 11: [0, 10, 11], 12: [0, 10, 11, 12], 13: [0, 10, 9, 13], 14: [0, 1, 8, 7, 14], 15: [0, 19, 18, 17, 16, 15], 16: [0, 19, 18, 17, 16], 17: [0, 19, 18, 17], 18: [0, 19, 18], 19: [0, 19]}

All these paths are obviously induced graphs:

sage: all([D.subgraph(p).is_isomorphic(graphs.PathGraph(len(p)) )for p in D.shortest_paths(0).values()])
True
sage: D.shortest_paths(0, cutoff=2)
{0: [0], 1: [0, 1], 2: [0, 1, 2], 3: [0, 19, 3], 8: [0, 1, 8], 9: [0, 10, 9], 10: [0, 10], 11: [0, 10, 11], 18: [0, 19, 18], 19: [0, 19]}
sage: G = Graph( { 0: {1: 1}, 1: {2: 1}, 2: {3: 1}, 3: {4: 2}, 4: {0: 2} }, sparse=True)
sage: G.plot(edge_labels=True).show() # long time
sage: G.shortest_paths(0, by_weight=True)
{0: [0], 1: [0, 1], 2: [0, 1, 2], 3: [0, 1, 2, 3], 4: [0, 4]}
show(**kwds)

Shows the (di)graph.

For syntax and lengthy documentation, see G.plot?. Any options not used by plot will be passed on to the Graphics.show method.

EXAMPLES:

sage: C = graphs.CubeGraph(8)
sage: P = C.plot(vertex_labels=False, vertex_size=0, graph_border=True)
sage: P.show()
show3d(bgcolor=(1, 1, 1), vertex_colors=None, vertex_size=0.059999999999999998, edge_colors=None, edge_size=0.02, edge_size2=0.032500000000000001, pos3d=None, color_by_label=False, engine='jmol', **kwds)

Plots the graph using Tachyon, and shows the resulting plot.

INPUT:

  • bgcolor - rgb tuple (default: (1,1,1))
  • vertex_size - float (default: 0.06)
  • vertex_colors - optional dictionary to specify vertex colors: each key is a color recognizable by tachyon (rgb tuple (default: (1,0,0))), and each corresponding entry is a list of vertices. If a vertex is not listed, it looks invisible on the resulting plot (it doesn’t get drawn).
  • edge_colors - a dictionary specifying edge colors: each key is a color recognized by tachyon ( default: (0,0,0) ), and each entry is a list of edges.
  • edge_size - float (default: 0.02)
  • edge_size2 - float (default: 0.0325), used for Tachyon sleeves
  • pos3d - a position dictionary for the vertices
  • iterations - how many iterations of the spring layout algorithm to go through, if applicable
  • engine - which renderer to use. Options:
  • 'jmol' - default ‘tachyon’
  • xres - resolution
  • yres - resolution
  • **kwds - passed on to the Tachyon command

EXAMPLES:

sage: G = graphs.CubeGraph(5)
sage: G.show3d(iterations=500, edge_size=None, vertex_size=0.04) # long time

We plot a fairly complicated Cayley graph:

sage: A5 = AlternatingGroup(5); A5
Alternating group of order 5!/2 as a permutation group
sage: G = A5.cayley_graph()
sage: G.show3d(vertex_size=0.03, edge_size=0.01, edge_size2=0.02, vertex_colors={(1,1,1):G.vertices()}, bgcolor=(0,0,0), color_by_label=True, iterations=200) # long time

Some Tachyon examples:

sage: D = graphs.DodecahedralGraph()
sage: D.show3d(engine='tachyon') # long time
sage: G = graphs.PetersenGraph()
sage: G.show3d(engine='tachyon', vertex_colors={(0,0,1):G.vertices()}) # long time
sage: C = graphs.CubeGraph(4)
sage: C.show3d(engine='tachyon', edge_colors={(0,1,0):C.edges()}, vertex_colors={(1,1,1):C.vertices()}, bgcolor=(0,0,0)) # long time
sage: K = graphs.CompleteGraph(3)
sage: K.show3d(engine='tachyon', edge_colors={(1,0,0):[(0,1,None)], (0,1,0):[(0,2,None)], (0,0,1):[(1,2,None)]}) # long time
size()

Returns the number of edges.

EXAMPLES:

sage: G = graphs.PetersenGraph()
sage: G.size()
15
spanning_trees_count(root_vertex=None)

Returns the number of spanning trees in a graph. In the case of a digraph, counts the number of spanning out-trees rooted in root_vertex. Default is to set first vertex as root.

This computation uses Kirchhoff’s Matrix Tree Theorem [1] to calculate the number of spanning trees. For complete graphs on n vertices the result can also be reached using Cayley’s formula: the number of spanning trees are n^(n-2).

For digraphs, the augmented Kirchhoff Matrix as defined in [2] is used for calculations. Here the result is the number of out-trees rooted at a specific vertex.

INPUT:

  • root_vertex – integer (default: the first vertex) This is the vertex that will be used as root for all spanning out-trees if the graph is a directed graph. This argument is ignored if the graph is not a digraph.

REFERENCES:

AUTHORS:

  • Anders Jonsson (2009-10-10)

EXAMPLES:

sage: G = graphs.PetersenGraph()
sage: G.spanning_trees_count()
2000
sage: n = 11
sage: G = graphs.CompleteGraph(n)
sage: ST = G.spanning_trees_count()
sage: ST == n^(n-2)
True
sage: M=matrix(3,3,[0,1,0,0,0,1,1,1,0])
sage: D=DiGraph(M)
sage: D.spanning_trees_count()
1
sage: D.spanning_trees_count(0)
1
sage: D.spanning_trees_count(2)
2
spectrum(laplacian=False)

Returns a list of the eigenvalues of the adjacency matrix.

INPUT:

  • laplacian - if True, use the Laplacian matrix (see kirchhoff_matrix())

OUTPUT:

A list of the eigenvalues, including multiplicities, sorted with the largest eigenvalue first.

EXAMPLES:

sage: P = graphs.PetersenGraph()
sage: P.spectrum()
[3, 1, 1, 1, 1, 1, -2, -2, -2, -2]
sage: P.spectrum(laplacian=True)
[5, 5, 5, 5, 2, 2, 2, 2, 2, 0]
sage: D = P.to_directed()
sage: D.delete_edge(7,9)
sage: D.spectrum()
[2.9032119259..., 1, 1, 1, 1, 0.8060634335..., -1.7092753594..., -2, -2, -2]
sage: C = graphs.CycleGraph(8)
sage: C.spectrum()
[2, 1.4142135623..., 1.4142135623..., 0, 0, -1.4142135623..., -1.4142135623..., -2]

A digraph may have complex eigenvalues. Previously, the complex parts of graph eigenvalues were being dropped. For a 3-cycle, we have:

sage: T = DiGraph({0:[1], 1:[2], 2:[0]})
sage: T.spectrum()
[1, -0.5000000000... + 0.8660254037...*I, -0.5000000000... - 0.8660254037...*I]

TESTS:

The Laplacian matrix of a graph is the negative of the adjacency matrix with the degree of each vertex on the diagonal. So for a regular graph, if \delta is an eigenvalue of a regular graph of degree r, then r-\delta will be an eigenvalue of the Laplacian. The Hoffman-Singleton graph is regular of degree 7, so the following will test both the Laplacian construction and the computation of eigenvalues.

sage: H = graphs.HoffmanSingletonGraph()
sage: evals = H.spectrum()
sage: lap = map(lambda x : 7 - x, evals)
sage: lap.sort(reverse=True)
sage: lap == H.spectrum(laplacian=True)
True
steiner_tree(vertices, weighted=False)

Returns a tree of minimum weight connecting the given set of vertices.

Definition :

Computing a minimum spanning tree in a graph can be done in n
\log(n) time (and in linear time if all weights are equal) where n = V + E. On the other hand, if one is given a large (possibly weighted) graph and a subset of its vertices, it is NP-Hard to find a tree of minimum weight connecting the given set of vertices, which is then called a Steiner Tree.

Wikipedia article on Steiner Trees.

INPUT:

  • vertices – the vertices to be connected by the Steiner Tree.
  • weighted (boolean) – Whether to consider the graph as weighted, and use each edge’s label as a weight, considering None as a weight of 1. If weighted=False (default) all edges are considered to have a weight of 1.

Note

  • This problem being defined on undirected graphs, the orientation is not considered if the current graph is actually a digraph.
  • The graph is assumed not to have multiple edges.

ALGORITHM:

Solved through Linear Programming.

COMPLEXITY:

NP-Hard.

Note that this algorithm first checks whether the given set of vertices induces a connected graph, returning one of its spanning trees if weighted is set to False, and thus answering very quickly in some cases

EXAMPLES:

The Steiner Tree of the first 5 vertices in a random graph is, of course, always a tree

sage: g = graphs.RandomGNP(30,.5)
sage: st = g.steiner_tree(g.vertices()[:5])
sage: st.is_tree()
True

And all the 5 vertices are contained in this tree

sage: all([v in st for v in g.vertices()[:5] ])
True

An exception is raised when the problem is impossible, i.e. if the given vertices are not all included in the same connected component

sage: g = 2 * graphs.PetersenGraph()
sage: st = g.steiner_tree([5,15])
...
ValueError: The given vertices do not all belong to the same connected component. This problem has no solution !
strong_product(other)

Returns the strong product of self and other.

The strong product of G and H is the graph L with vertex set V(L) equal to the Cartesian product of the vertices V(G) and V(H), and ((u,v), (w,x)) is an edge iff either - (u, w) is an edge of self and v = x, or - (v, x) is an edge of other and u = w, or - (u, w) is an edge of self and (v, x) is an edge of other. In other words, the edges of the strong product is the union of the edges of the tensor and Cartesian products.

EXAMPLES:

sage: Z = graphs.CompleteGraph(2)
sage: C = graphs.CycleGraph(5)
sage: S = C.strong_product(Z); S
Graph on 10 vertices
sage: S.plot() # long time
sage: D = graphs.DodecahedralGraph()
sage: P = graphs.PetersenGraph()
sage: S = D.strong_product(P); S
Graph on 200 vertices
sage: S.plot() # long time
subdivide_edge(*args)

Subdivides an edge k times.

INPUT:

The following forms are all accepted to subdivide 8 times the edge between vertices 1 and 2 labeled with "my_label".

  • G.subdivide_edge( 1, 2, 8 )
  • G.subdivide_edge( (1, 2), 8 )
  • G.subdivide_edge( (1, 2, "my_label"), 8 )

Note

  • If the given edge is labelled with l, all the edges created by the subdivision will have the same label.
  • If no label is given, the label used will be the one returned by the method edge_label() on the pair u,v

EXAMPLE:

Subdividing 5 times an edge in a path of length 3 makes it a path of length 8:

sage: g = graphs.PathGraph(3)
sage: edge = g.edges()[0]
sage: g.subdivide_edge(edge, 5)
sage: g.is_isomorphic(graphs.PathGraph(8))
True

Subdividing a labelled edge in two ways

sage: g = Graph()
sage: g.add_edge(0,1,"label1")
sage: g.add_edge(1,2,"label2")
sage: print sorted(g.edges())
[(0, 1, 'label1'), (1, 2, 'label2')]

Specifying the label:

sage: g.subdivide_edge(0,1,"label1", 3)
sage: print sorted(g.edges())
[(0, 3, 'label1'), (1, 2, 'label2'), (1, 5, 'label1'), (3, 4, 'label1'), (4, 5, 'label1')]

The lazy way:

sage: g.subdivide_edge(1,2,"label2", 5)
sage: print sorted(g.edges())
[(0, 3, 'label1'), (1, 5, 'label1'), (1, 6, 'label2'), (2, 10, 'label2'), (3, 4, 'label1'), (4, 5, 'label1'), (6, 7, 'label2'), (7, 8, 'label2'), (8, 9, 'label2'), (9, 10, 'label2')]

If too many arguments are given, an exception is raised

sage: g.subdivide_edge(0,1,1,1,1,1,1,1,1,1,1)
...
ValueError: This method takes at most 4 arguments !

The same goes when the given edge does not exist:

sage: g.subdivide_edge(0,1,"fake_label",5)
...
ValueError: The given edge does not exist.

See also

subdivide_edges(edges, k)

Subdivides k times edges from an iterable container.

For more information on the behaviour of this method, please refer to the documentation of subdivide_edge().

INPUT:

  • edges – a list of edges
  • k (integer) – common length of the subdivisions

Note

If a given edge is labelled with l, all the edges created by its subdivision will have the same label.

EXAMPLE:

If we are given the disjoint union of several paths:

sage: paths = [2,5,9]
sage: paths = map(graphs.PathGraph, paths)
sage: g = Graph()
sage: for P in paths:
...     g = g + P

... subdividing edges in each of them will only change their lengths:

sage: edges = [P.edges()[0] for P in g.connected_components_subgraphs()]
sage: k = 6
sage: g.subdivide_edges(edges, k)

Let us check this by creating the graph we expect to have built through subdivision:

sage: paths2 = [2+k, 5+k, 9+k]
sage: paths2 = map(graphs.PathGraph, paths2)
sage: g2 = Graph()
sage: for P in paths2:
...     g2 = g2 + P
sage: g.is_isomorphic(g2)
True

See also

subgraph(vertices=None, edges=None, inplace=False, vertex_property=None, edge_property=None, algorithm=None)

Returns the subgraph containing the given vertices and edges. If either vertices or edges are not specified, they are assumed to be all vertices or edges. If edges are not specified, returns the subgraph induced by the vertices.

INPUT:

  • inplace - Using inplace is True will simply delete the extra vertices and edges from the current graph. This will modify the graph.
  • vertices - Vertices can be a single vertex or an iterable container of vertices, e.g. a list, set, graph, file or numeric array. If not passed, defaults to the entire graph.
  • edges - As with vertices, edges can be a single edge or an iterable container of edges (e.g., a list, set, file, numeric array, etc.). If not edges are not specified, then all edges are assumed and the returned graph is an induced subgraph. In the case of multiple edges, specifying an edge as (u,v) means to keep all edges (u,v), regardless of the label.
  • vertex_property - If specified, this is expected to be a function on vertices, which is intersected with the vertices specified, if any are.
  • edge_property - If specified, this is expected to be a function on edges, which is intersected with the edges specified, if any are.
  • algorithm - If algorithm=delete or inplace=True, then the graph is constructed by deleting edges and vertices. If add, then the graph is constructed by building a new graph from the appropriate vertices and edges. If not specified, then the algorithm is chosen based on the number of vertices in the subgraph.

EXAMPLES:

sage: G = graphs.CompleteGraph(9)
sage: H = G.subgraph([0,1,2]); H
Subgraph of (Complete graph): Graph on 3 vertices
sage: G
Complete graph: Graph on 9 vertices
sage: J = G.subgraph(edges=[(0,1)])
sage: J.edges(labels=False)
[(0, 1)]
sage: J.vertices()==G.vertices()
True
sage: G.subgraph([0,1,2], inplace=True); G
Subgraph of (Complete graph): Graph on 3 vertices
sage: G.subgraph()==G
True
sage: D = graphs.CompleteGraph(9).to_directed()
sage: H = D.subgraph([0,1,2]); H
Subgraph of (Complete graph): Digraph on 3 vertices
sage: H = D.subgraph(edges=[(0,1), (0,2)])
sage: H.edges(labels=False)
[(0, 1), (0, 2)]
sage: H.vertices()==D.vertices()
True
sage: D
Complete graph: Digraph on 9 vertices
sage: D.subgraph([0,1,2], inplace=True); D
Subgraph of (Complete graph): Digraph on 3 vertices
sage: D.subgraph()==D
True

A more complicated example involving multiple edges and labels.

sage: G = Graph(multiedges=True, sparse=True)
sage: G.add_edges([(0,1,'a'), (0,1,'b'), (1,0,'c'), (0,2,'d'), (0,2,'e'), (2,0,'f'), (1,2,'g')])
sage: G.subgraph(edges=[(0,1), (0,2,'d'), (0,2,'not in graph')]).edges()
[(0, 1, 'a'), (0, 1, 'b'), (0, 1, 'c'), (0, 2, 'd')]
sage: J = G.subgraph(vertices=[0,1], edges=[(0,1,'a'), (0,2,'c')])
sage: J.edges()
[(0, 1, 'a')]
sage: J.vertices()
[0, 1]
sage: G.subgraph(vertices=G.vertices())==G
True
sage: D = DiGraph(multiedges=True, sparse=True)
sage: D.add_edges([(0,1,'a'), (0,1,'b'), (1,0,'c'), (0,2,'d'), (0,2,'e'), (2,0,'f'), (1,2,'g')])
sage: D.subgraph(edges=[(0,1), (0,2,'d'), (0,2,'not in graph')]).edges()
[(0, 1, 'a'), (0, 1, 'b'), (0, 2, 'd')]
sage: H = D.subgraph(vertices=[0,1], edges=[(0,1,'a'), (0,2,'c')])
sage: H.edges()
[(0, 1, 'a')]
sage: H.vertices()
[0, 1]

Using the property arguments:

sage: P = graphs.PetersenGraph()
sage: S = P.subgraph(vertex_property = lambda v : v%2 == 0)
sage: S.vertices()
[0, 2, 4, 6, 8]
sage: C = graphs.CubeGraph(2)
sage: S = C.subgraph(edge_property=(lambda e: e[0][0] == e[1][0]))
sage: C.edges()
[('00', '01', None), ('00', '10', None), ('01', '11', None), ('10', '11', None)]
sage: S.edges()
[('00', '01', None), ('10', '11', None)]

The algorithm is not specified, then a reasonable choice is made for speed.

sage: g=graphs.PathGraph(1000)
sage: g.subgraph(range(10)) # uses the 'add' algorithm
Subgraph of (Path Graph): Graph on 10 vertices

TESTS: The appropriate properties are preserved.

sage: g = graphs.PathGraph(10)
sage: g.is_planar(set_embedding=True)
True
sage: g.set_vertices(dict((v, 'v%d'%v) for v in g.vertices()))
sage: h = g.subgraph([3..5])
sage: h.get_pos().keys()
[3, 4, 5]
sage: h.get_vertices()
{3: 'v3', 4: 'v4', 5: 'v5'}

Returns a copy of G in self.

INPUT:

  • G – the graph whose copy we are looking for in self.
  • induced – boolean (default: False). Whether or not to search for an induced copy of G in self.

OUTPUT:

  • If induced=False, return a copy of G in this graph. Otherwise, return an induced copy of G in self. If G is the empty graph, return the empty graph since it is a subgraph of every graph. Now suppose G is not the empty graph. If there is no copy (induced or otherwise) of G in self, we return None.

ALGORITHM:

Brute-force search.

EXAMPLES:

The Petersen graph contains the path graph P_5:

sage: g = graphs.PetersenGraph()
sage: h1 = g.subgraph_search(graphs.PathGraph(5)); h1
Subgraph of (Petersen graph): Graph on 5 vertices
sage: h1.vertices()
[0, 1, 2, 3, 4]
sage: I1 = g.subgraph_search(graphs.PathGraph(5), induced=True); I1
Subgraph of (Petersen graph): Graph on 5 vertices
sage: I1.vertices()
[0, 1, 2, 3, 8]

It also contains the claw K_{1,3}:

sage: h2 = g.subgraph_search(graphs.ClawGraph()); h2
Subgraph of (Petersen graph): Graph on 4 vertices
sage: h2.vertices()
[0, 1, 4, 5]
sage: I2 = g.subgraph_search(graphs.ClawGraph(), induced=True); I2
Subgraph of (Petersen graph): Graph on 4 vertices
sage: I2.vertices()
[0, 1, 4, 5]

Of course the induced copies are isomorphic to the graphs we were looking for:

sage: I1.is_isomorphic(graphs.PathGraph(5))
True
sage: I2.is_isomorphic(graphs.ClawGraph())
True

However, the Petersen graph does not contain a subgraph isomorphic to K_3:

sage: g.subgraph_search(graphs.CompleteGraph(3)) is None
True

Nor does it contain a nonempty induced subgraph isomorphic to P_6:

sage: g.subgraph_search(graphs.PathGraph(6), induced=True) is None
True

The empty graph is a subgraph of every graph:

sage: g.subgraph_search(graphs.EmptyGraph())
Graph on 0 vertices
sage: g.subgraph_search(graphs.EmptyGraph(), induced=True)
Graph on 0 vertices
szeged_index()

Returns the Szeged index of the graph.

For any uv\in E(G), let N_u(uv) = \{w\in G:d(u,w)<d(v,w)\}, n_u(uv)=|N_u(uv)|

The Szeged index of a graph is then defined as [1]: \sum_{uv \in E(G)}n_u(uv)\times n_v(uv)

EXAMPLE:

True for any connected graph [1]:

sage: g=graphs.PetersenGraph()
sage: g.wiener_index()<= g.szeged_index()
True

True for all trees [1]:

sage: g=Graph()
sage: g.add_edges(graphs.CubeGraph(5).min_spanning_tree())
sage: g.wiener_index() == g.szeged_index()
True

REFERENCE:

[1] Klavzar S., Rajapakse A., Gutman I. (1996). The Szeged and the Wiener index of graphs. Applied Mathematics Letters, 9 (5), pp. 45-49.

tensor_product(other)

Returns the tensor product, also called the categorical product, of self and other.

The tensor product of G and H is the graph L with vertex set V(L) equal to the Cartesian product of the vertices V(G) and V(H), and ((u,v), (w,x)) is an edge iff - (u, w) is an edge of self, and - (v, x) is an edge of other.

EXAMPLES:

sage: Z = graphs.CompleteGraph(2)
sage: C = graphs.CycleGraph(5)
sage: T = C.tensor_product(Z); T
Graph on 10 vertices
sage: T.plot() # long time
sage: D = graphs.DodecahedralGraph()
sage: P = graphs.PetersenGraph()
sage: T = D.tensor_product(P); T
Graph on 200 vertices
sage: T.plot() # long time
to_simple()

Returns a simple version of itself (i.e., undirected and loops and multiple edges are removed).

EXAMPLES:

sage: G = DiGraph(loops=True,multiedges=True,sparse=True)
sage: G.add_edges( [ (0,0), (1,1), (2,2), (2,3,1), (2,3,2), (3,2) ] )
sage: G.edges(labels=False)
[(0, 0), (1, 1), (2, 2), (2, 3), (2, 3), (3, 2)]
sage: H=G.to_simple()
sage: H.edges(labels=False)
[(2, 3)]
sage: H.is_directed()
False
sage: H.allows_loops()
False
sage: H.allows_multiple_edges()
False
trace_faces(comb_emb)

A helper function for finding the genus of a graph. Given a graph and a combinatorial embedding (rot_sys), this function will compute the faces (returned as a list of lists of edges (tuples) of the particular embedding.

Note - rot_sys is an ordered list based on the hash order of the vertices of graph. To avoid confusion, it might be best to set the rot_sys based on a ‘nice_copy’ of the graph.

INPUT:

  • comb_emb - a combinatorial embedding dictionary. Format: v1:[v2,v3], v2:[v1], v3:[v1] (clockwise ordering of neighbors at each vertex.)

EXAMPLES:

sage: T = graphs.TetrahedralGraph()
sage: T.trace_faces({0: [1, 3, 2], 1: [0, 2, 3], 2: [0, 3, 1], 3: [0, 1, 2]})
[[(0, 1), (1, 2), (2, 0)],
 [(3, 2), (2, 1), (1, 3)],
 [(2, 3), (3, 0), (0, 2)],
 [(0, 3), (3, 1), (1, 0)]]
transitive_closure()

Computes the transitive closure of a graph and returns it. The original graph is not modified.

The transitive closure of a graph G has an edge (x,y) if and only if there is a path between x and y in G.

The transitive closure of any strongly connected component of a graph is a complete graph. In particular, the transitive closure of a connected undirected graph is a complete graph. The transitive closure of a directed acyclic graph is a directed acyclic graph representing the full partial order.

EXAMPLES:

sage: g=graphs.PathGraph(4)
sage: g.transitive_closure()
Transitive closure of Path Graph: Graph on 4 vertices
sage: g.transitive_closure()==graphs.CompleteGraph(4)
True
sage: g=DiGraph({0:[1,2], 1:[3], 2:[4,5]})
sage: g.transitive_closure().edges(labels=False)
[(0, 1), (0, 2), (0, 3), (0, 4), (0, 5), (1, 3), (2, 4), (2, 5)]
transitive_reduction()

Returns a transitive reduction of a graph. The original graph is not modified.

A transitive reduction H of G has a path from x to y if and only if there was a path from x to y in G. Deleting any edge of H destroys this property. A transitive reduction is not unique in general. A transitive reduction has the same transitive closure as the original graph.

A transitive reduction of a complete graph is a tree. A transitive reduction of a tree is itself.

EXAMPLES:

sage: g=graphs.PathGraph(4)
sage: g.transitive_reduction()==g
True
sage: g=graphs.CompleteGraph(5)
sage: edges = g.transitive_reduction().edges(); len(edges)
4
sage: g=DiGraph({0:[1,2], 1:[2,3,4,5], 2:[4,5]})
sage: g.transitive_reduction().size()
5
traveling_salesman_problem(weighted=True)

Solves the traveling salesman problem (TSP)

Given a graph (resp. a digraph) G with weighted edges, the traveling salesman problem consists in finding a hamiltonian cycle (resp. circuit) of the graph of minimum cost.

This TSP is one of the most famous NP-Complete problems, this function can thus be expected to take some time before returning its result.

INPUT:

  • weighted (boolean) – whether to consider the weights of the edges.

    • If set to False (default), all edges are assumed to weight 1
    • If set to True, the weights are taken into account, and the edges whose weight is None are assumed to be set to 1

OUTPUT:

A solution to the TSP, as a Graph object whose vertex set is V(G), and whose edges are only those of the solution.

ALGORITHM:

This optimization problem is solved through the use of Linear Programming.

NOTE:

  • This function is correctly defined for both graph and digraphs. In the second case, the returned cycle is a circuit of optimal cost.

EXAMPLES:

The Heawood graph is known to be hamiltonian:

sage: g = graphs.HeawoodGraph()
sage: tsp = g.traveling_salesman_problem()
sage: tsp
TSP from Heawood graph: Graph on 14 vertices

The solution to the TSP has to be connected

sage: tsp.is_connected()
True

It must also be a 2-regular graph:

sage: tsp.is_regular(k=2)
True

And obviously it is a subgraph of the Heawood graph:

sage: all([ e in g.edges() for e in tsp.edges()])
True

On the other hand, the Petersen Graph is known not to be hamiltonian:

sage: g = graphs.PetersenGraph()
sage: tsp = g.traveling_salesman_problem()
...
ValueError: The given graph is not hamiltonian

One easy way to change is is obviously to add to this graph the edges corresponding to a hamiltonian cycle.

If we do this by setting the cost of these new edges to 2, while the others are set to 1, we notice that not all the edges we added are used in the optimal solution

sage: for u, v in g.edges(labels = None):
...      g.set_edge_label(u,v,1)

sage: cycle = graphs.CycleGraph(10)
sage: for u,v in cycle.edges(labels = None):
...      if not g.has_edge(u,v):
...          g.add_edge(u,v)
...      g.set_edge_label(u,v,2)

sage: tsp = g.traveling_salesman_problem(weighted = True)
sage: sum( tsp.edge_labels() ) < 2*10
True

If we pick 1/2 instead of 2 as a cost for these new edges, they clearly become the optimal solution

sage: for u,v in cycle.edges(labels = None): ... g.set_edge_label(u,v,1/2)

sage: tsp = g.traveling_salesman_problem(weighted = True) sage: sum( tsp.edge_labels() ) == (1/2)*10 True

union(other)

Returns the union of self and other.

If the graphs have common vertices, the common vertices will be identified.

EXAMPLES:

sage: G = graphs.CycleGraph(3)
sage: H = graphs.CycleGraph(4)
sage: J = G.union(H); J
Graph on 4 vertices
sage: J.vertices()
[0, 1, 2, 3]
sage: J.edges(labels=False)
[(0, 1), (0, 2), (0, 3), (1, 2), (2, 3)]
vertex_boundary(vertices1, vertices2=None)

Returns a list of all vertices in the external boundary of vertices1, intersected with vertices2. If vertices2 is None, then vertices2 is the complement of vertices1. This is much faster if vertices1 is smaller than vertices2.

The external boundary of a set of vertices is the union of the neighborhoods of each vertex in the set. Note that in this implementation, since vertices2 defaults to the complement of vertices1, if a vertex v has a loop, then vertex_boundary(v) will not contain v.

In a digraph, the external boundary of a vertex v are those vertices u with an arc (v, u).

EXAMPLES:

sage: G = graphs.CubeGraph(4)
sage: l = ['0111', '0000', '0001', '0011', '0010', '0101', '0100', '1111', '1101', '1011', '1001']
sage: G.vertex_boundary(['0000', '1111'], l)
['0111', '0001', '0010', '0100', '1101', '1011']
sage: D = DiGraph({0:[1,2], 3:[0]})
sage: D.vertex_boundary([0])
[1, 2]
vertex_connectivity(value_only=True, sets=False, solver=None, verbose=0)

Returns the vertex connectivity of the graph. For more information, see the Wikipedia article on connectivity.

INPUT:

  • value_only – boolean (default: True)
    • When set to True (default), only the value is returned.
    • When set to False , both the value and a minimum edge cut are returned.
  • sets – boolean (default: False)
    • When set to True, also returns the two sets of vertices that are disconnected by the cut. Implies value_only=False
  • solver – (default: None) Specify a Linear Program (LP) solver to be used. If set to None, the default one is used. For more information on LP solvers and which default solver is used, see the method solve of the class MixedIntegerLinearProgram.
  • verbose – integer (default: 0). Sets the level of verbosity. Set to 0 by default, which means quiet.

EXAMPLES:

A basic application on a PappusGraph:

sage: g=graphs.PappusGraph()
sage: g.vertex_connectivity()
3.0

In a grid, the vertex connectivity is equal to the minimum degree, in which case one of the two sets it of cardinality 1:

sage: g = graphs.GridGraph([ 3,3 ])
sage: [value, cut, [ setA, setB ]] = g.vertex_connectivity(sets=True)
sage: len(setA) == 1 or len(setB) == 1
True

A vertex cut in a tree is any internal vertex:

sage: g = graphs.RandomGNP(15,.5)
sage: tree = Graph()
sage: tree.add_edges(g.min_spanning_tree())
sage: [val, [cut_vertex]] = tree.vertex_connectivity(value_only=False)
sage: tree.degree(cut_vertex) > 1
True

When value_only = True, this function is optimized for small connexity values and does not need to build a linear program.

It is the case for connected graphs which are not connected:

sage: g = 2 * graphs.PetersenGraph()
sage: g.vertex_connectivity()
0.0

Or if they are just 1-connected:

sage: g = graphs.PathGraph(10)
sage: g.vertex_connectivity()
1.0

For directed graphs, the strong connexity is tested through the dedicated function:

sage: g = digraphs.ButterflyGraph(3)
sage: g.vertex_connectivity()
0.0
vertex_cover(algorithm='Cliquer', value_only=False, solver=None, verbose=0)

Returns a minimum vertex cover of self represented by a list of vertices.

A minimum vertex cover of a graph is a set S of vertices such that each edge is incident to at least one element of S, and such that S is of minimum cardinality. For more information, see the Wikipedia article on vertex cover.

Equivalently, a vertex cover is defined as the complement of an independent set.

As an optimization problem, it can be expressed as follows:

\mbox{Minimize : }&\sum_{v\in G} b_v\\
\mbox{Such that : }&\forall (u,v) \in G.edges(), b_u+b_v\geq 1\\
&\forall x\in G, b_x\mbox{ is a binary variable}

INPUT:

  • algorithm – string (default: "Cliquer"). Indicating which algorithm to use. It can be one of those two values.
    • "Cliquer" will compute a minimum vertex cover using the Cliquer package.
    • "MILP" will compute a minimum vertex cover through a mixed integer linear program (requires packages GLPK or CBC).
  • value_only – boolean (default: False). If set to True, only the size of a minimum vertex cover is returned. Otherwise, a minimum vertex cover is returned as a list of vertices.
  • log – non negative integer (default: 0). Set the level of verbosity you want from the linear program solver. Since the problem of computing a vertex cover is NP-complete, its solving may take some time depending on the graph. A value of 0 means that there will be no message printed by the solver. This option is only useful if algorithm="MILP".
  • solver – (default: None) Specify a Linear Program (LP) solver to be used. If set to None, the default one is used. For more information on LP solvers and which default solver is used, see the method solve of the class MixedIntegerLinearProgram.
  • verbose – integer (default: 0). Sets the level of verbosity. Set to 0 by default, which means quiet.

EXAMPLES:

On the Pappus graph:

sage: g = graphs.PappusGraph()
sage: g.vertex_cover(value_only=True)
9

The two algorithms should return the same result:

sage: g = graphs.RandomGNP(10,.5)
sage: vc1 = g.vertex_cover(algorithm="MILP")
sage: vc2 = g.vertex_cover(algorithm="Cliquer")
sage: len(vc1) == len(vc2)
True
vertex_cut(s, t, value_only=True, vertices=False, solver=None, verbose=0)

Returns a minimum vertex cut between non adjacent vertices s and t represented by a list of vertices.

A vertex cut between two non adjacent vertices is a set U of vertices of self such that the graph obtained by removing U from self is disconnected. For more information, see the Wikipedia article on cuts.

INPUT:

  • value_only – boolean (default: True). When set to True, only the size of the minimum cut is returned.
  • vertices – boolean (default: False). When set to True, also returns the two sets of vertices that are disconnected by the cut. Implies value_only set to False.
  • solver – (default: None) Specify a Linear Program (LP) solver to be used. If set to None, the default one is used. For more information on LP solvers and which default solver is used, see the method solve of the class MixedIntegerLinearProgram.
  • verbose – integer (default: 0). Sets the level of verbosity. Set to 0 by default, which means quiet.

OUTPUT:

Real number or tuple, depending on the given arguments (examples are given below).

EXAMPLE:

A basic application in the Pappus graph:

sage: g = graphs.PappusGraph()
sage: g.vertex_cut(1, 16, value_only=True)
3.0

In the bipartite complete graph K_{2,8}, a cut between the two vertices in the size 2 part consists of the other 8 vertices:

sage: g = graphs.CompleteBipartiteGraph(2, 8)
sage: [value, vertices] = g.vertex_cut(0, 1, value_only=False)
sage: print value
8.0
sage: vertices == range(2,10)
True

Clearly, in this case the two sides of the cut are singletons

sage: [value, vertices, [set1, set2]] = g.vertex_cut(0,1, vertices=True)
sage: len(set1) == 1
True
sage: len(set2) == 1
True
vertex_disjoint_paths(s, t)

Returns a list of vertex-disjoint paths between two vertices as given by Menger’s theorem.

The vertex version of Menger’s theorem asserts that the size of the minimum vertex cut between two vertices s and`t` (the minimum number of vertices whose removal disconnects s and t) is equal to the maximum number of pairwise vertex-independent paths from s to t.

This function returns a list of such paths.

EXAMPLE:

In a complete bipartite graph

sage: g = graphs.CompleteBipartiteGraph(2,3)
sage: g.vertex_disjoint_paths(0,1)
[[0, 2, 1], [0, 3, 1], [0, 4, 1]]
vertex_iterator(vertices=None)

Returns an iterator over the given vertices. Returns False if not given a vertex, sequence, iterator or None. None is equivalent to a list of every vertex. Note that for v in G syntax is allowed.

INPUT:

  • vertices - iterated vertices are these intersected with the vertices of the (di)graph

EXAMPLES:

sage: P = graphs.PetersenGraph()
sage: for v in P.vertex_iterator():
...    print v
...
0
1
2
...
8
9
sage: G = graphs.TetrahedralGraph()
sage: for i in G:
...    print i
0
1
2
3

Note that since the intersection option is available, the vertex_iterator() function is sub-optimal, speed-wise, but note the following optimization:

sage: timeit V = P.vertices()                   # not tested
100000 loops, best of 3: 8.85 [micro]s per loop
sage: timeit V = list(P.vertex_iterator())      # not tested
100000 loops, best of 3: 5.74 [micro]s per loop
sage: timeit V = list(P._nxg.adj.iterkeys())    # not tested
100000 loops, best of 3: 3.45 [micro]s per loop

In other words, if you want a fast vertex iterator, call the dictionary directly.

vertices(boundary_first=False)

Return a list of the vertices.

INPUT:

  • boundary_first - Return the boundary vertices first.

EXAMPLES:

sage: P = graphs.PetersenGraph()
sage: P.vertices()
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

Note that the output of the vertices() function is always sorted. This is sub-optimal, speed-wise, but note the following optimizations:

sage: timeit V = P.vertices()                     # not tested
100000 loops, best of 3: 8.85 [micro]s per loop
sage: timeit V = list(P.vertex_iterator())        # not tested
100000 loops, best of 3: 5.74 [micro]s per loop
sage: timeit V = list(P._nxg.adj.iterkeys())      # not tested
100000 loops, best of 3: 3.45 [micro]s per loop

In other words, if you want a fast vertex iterator, call the dictionary directly.

weighted(new=None)

Returns whether the (di)graph is to be considered as a weighted (di)graph.

Note that edge weightings can still exist for (di)graphs G where G.weighted() is False.

EXAMPLES: Here we have two graphs with different labels, but weighted is False for both, so we just check for the presence of edges:

sage: G = Graph({0:{1:'a'}},sparse=True)
sage: H = Graph({0:{1:'b'}},sparse=True)
sage: G == H
True

Now one is weighted and the other is not, and thus the graphs are not equal:

sage: G.weighted(True)
sage: H.weighted()
False
sage: G == H
False

However, if both are weighted, then we finally compare ‘a’ to ‘b’.

sage: H.weighted(True)
sage: G == H
False
weighted_adjacency_matrix(sparse=True, boundary_first=False)

Returns the weighted adjacency matrix of the graph. Each vertex is represented by its position in the list returned by the vertices() function.

EXAMPLES:

sage: G = Graph(sparse=True, weighted=True)
sage: G.add_edges([(0,1,1),(1,2,2),(0,2,3),(0,3,4)])
sage: M = G.weighted_adjacency_matrix(); M
[0 1 3 4]
[1 0 2 0]
[3 2 0 0]
[4 0 0 0]
sage: H = Graph(data=M, format='weighted_adjacency_matrix', sparse=True)
sage: H == G
True

The following doctest verifies that #4888 is fixed:

sage: G = DiGraph({0:{}, 1:{0:1}, 2:{0:1}}, weighted = True,sparse=True)
sage: G.weighted_adjacency_matrix() 
[0 0 0]
[1 0 0]
[1 0 0]
wiener_index()

Returns the Wiener index of the graph.

The Wiener index of a graph G can be defined in two equivalent ways [1] :

  • W(G) = \frac 1 2 \sum_{u,v\in G} d(u,v) where d(u,v) denotes the distance between vertices u and v.
  • Let \Omega be a set of \frac {n(n-1)} 2 paths in G such that \Omega contains exactly one shortest u-v path for each set \{u,v\} of vertices in G. Besides, \forall e\in E(G), let \Omega(e) denote the paths from \Omega containing e. We then have W(G) = \sum_{e\in E(G)}|\Omega(e)|.

EXAMPLE:

From [2], cited in [1]:

sage: g=graphs.PathGraph(10)
sage: w=lambda x: (x*(x*x -1)/6)
sage: g.wiener_index()==w(10)
True

REFERENCE:

[1] Klavzar S., Rajapakse A., Gutman I. (1996). The Szeged and the Wiener index of graphs. Applied Mathematics Letters, 9 (5), pp. 45-49.

[2] I Gutman, YN Yeh, SL Lee, YL Luo (1993), Some recent results in the theory of the Wiener number. INDIAN JOURNAL OF CHEMISTRY SECTION A PUBLICATIONS & INFORMATION DIRECTORATE, CSIR

sage.graphs.generic_graph.graph_isom_equivalent_non_edge_labeled_graph(g, partition)

Helper function for canonical labeling of edge labeled (di)graphs.

Translates to a bipartite incidence-structure type graph appropriate for computing canonical labels of edge labeled graphs. Note that this is actually computationally equivalent to implementing a change on an inner loop of the main algorithm- namely making the refinement procedure sort for each label.

If the graph is a multigraph, it is translated to a non-multigraph, where each edge is labeled with a dictionary describing how many edges of each label were originally there. Then in either case we are working on a graph without multiple edges. At this point, we create another (bipartite) graph, whose left vertices are the original vertices of the graph, and whose right vertices represent the edges. We partition the left vertices as they were originally, and the right vertices by common labels: only automorphisms taking edges to like-labeled edges are allowed, and this additional partition information enforces this on the bipartite graph.

EXAMPLES:

sage: G = Graph(multiedges=True,sparse=True)
sage: G.add_edges([(0,1,i) for i in range(10)])
sage: G.add_edge(1,2,'string')
sage: G.add_edge(2,3)
sage: from sage.graphs.generic_graph import graph_isom_equivalent_non_edge_labeled_graph
sage: graph_isom_equivalent_non_edge_labeled_graph(G, [G.vertices()])
(Graph on 7 vertices, [[('o', 0), ('o', 1), ('o', 2), ('o', 3)], [('x', 2)], [('x', 0)], [('x', 1)]])
sage.graphs.generic_graph.graph_isom_equivalent_non_multi_graph(g, partition)

Helper function for canonical labeling of multi-(di)graphs.

The idea for this function is that the main algorithm for computing isomorphism of graphs does not allow multiple edges. Instead of making some very difficult changes to that, we can simply modify the multigraph into a non-multi graph that carries essentially the same information. For each pair of vertices \{u,v\}, if there is at most one edge between u and v, we do nothing, but if there are more than one, we split each edge into two, introducing a new vertex. These vertices really represent edges, so we keep them in their own part of a partition - to distinguish them from genuine vertices. Then the canonical label and automorphism group is computed, and in the end, we strip off the parts of the generators that describe how these new vertices move, and we have the automorphism group of the original multi-graph. Similarly, by putting the additional vertices in their own cell of the partition, we guarantee that the relabeling leading to a canonical label moves genuine vertices amongst themselves, and hence the canonical label is still well-defined, when we forget about the additional vertices.

EXAMPLES:

sage: from sage.graphs.generic_graph import graph_isom_equivalent_non_multi_graph
sage: G = Graph(multiedges=True,sparse=True)
sage: G.add_edge((0,1,1))
sage: G.add_edge((0,1,2))
sage: G.add_edge((0,1,3))
sage: graph_isom_equivalent_non_multi_graph(G, [[0,1]])
(Graph on 5 vertices, [[('o', 0), ('o', 1)], [('x', 0), ('x', 1), ('x', 2)]])
sage.graphs.generic_graph.tachyon_vertex_plot(g, bgcolor=(1, 1, 1), vertex_colors=None, vertex_size=0.059999999999999998, pos3d=None, **kwds)

Helper function for plotting graphs in 3d with Tachyon. Returns a plot containing only the vertices, as well as the 3d position dictionary used for the plot.

INPUT:
  • pos3d - a 3D layout of the vertices
  • various rendering options

EXAMPLES:

sage: G = graphs.TetrahedralGraph()
sage: from sage.graphs.generic_graph import tachyon_vertex_plot
sage: T,p = tachyon_vertex_plot(G, pos3d = G.layout(dim=3))
sage: type(T)
<class 'sage.plot.plot3d.tachyon.Tachyon'>
sage: type(p)
<type 'dict'>

Table Of Contents

Previous topic

Graph Theory

Next topic

Graph Theory

This Page