Period lattices of elliptic curves and related functions.

Let E be an elliptic curve defined over a number field K (including \QQ). We attach a period lattice (a discrete rank 2 subgroup of \CC) to each embedding of K into \CC.

In the case of real embeddings, the lattice is stable under complex conjugation and is called a real lattice. These have two types: rectangular, (the real curve has two connected components and positive discriminant) or non-rectangular (one connected component, negative discriminant).

The periods are computed to arbitrary precision using the AGM (Gauss’s Arithmetic-Geometric Mean).

EXAMPLES:

sage: K.<a> = NumberField(x^3-2)
sage: E = EllipticCurve([0,1,0,a,a])

First we try a real embedding:

sage: emb = K.embeddings(RealField())[0]
sage: L = E.period_lattice(emb); L
Period lattice associated to Elliptic Curve defined by y^2 = x^3 + x^2 + a*x + a over Number Field in a with defining polynomial x^3 - 2 with respect to the embedding Ring morphism:
From: Number Field in a with defining polynomial x^3 - 2
To:   Algebraic Real Field
Defn: a |--> 1.259921049894873?

The first basis period is real:

sage: L.basis()
(3.81452977217855, 1.90726488608927 + 1.34047785962440*I)
sage: L.is_real()
True

For a basis \omega_1,\omega_2 normalised so that \omega_1/\omega_2 is in the fundamental region of the upper half-plane, use the function normalised_basis() instead:

sage: L.normalised_basis()
(1.90726488608927 - 1.34047785962440*I, -1.90726488608927 - 1.34047785962440*I)

Next a complex embedding:

sage: emb = K.embeddings(ComplexField())[0]
sage: L = E.period_lattice(emb); L
Period lattice associated to Elliptic Curve defined by y^2 = x^3 + x^2 + a*x + a over Number Field in a with defining polynomial x^3 - 2 with respect to the embedding Ring morphism:
From: Number Field in a with defining polynomial x^3 - 2
To:   Algebraic Field
Defn: a |--> -0.6299605249474365? - 1.091123635971722?*I

In this case, the basis \omega_1, \omega_2 is always normalised so that \tau = \omega_1/\omega_2 is in the fundamental region in the upper half plane:

sage: w1,w2 = L.basis(); w1,w2
(-1.37588604166076 - 2.58560946624443*I, -2.10339907847356 + 0.428378776460622*I)
sage: L.is_real()
False
sage: tau = w1/w2; tau
0.387694505032876 + 1.30821088214407*I
sage: L.normalised_basis()
(-1.37588604166076 - 2.58560946624443*I, -2.10339907847356 + 0.428378776460622*I)

We test that bug #8415 (caused by a Pari bug fixed in v2.3.5) is OK:

sage: E = EllipticCurve('37a')
sage: K.<a> = QuadraticField(-7)
sage: EK = E.change_ring(K)
sage: EK.period_lattice(K.complex_embeddings()[0])
Period lattice associated to Elliptic Curve defined by y^2 + y = x^3 + (-1)*x over Number Field in a with defining polynomial x^2 + 7 with respect to the embedding Ring morphism:
  From: Number Field in a with defining polynomial x^2 + 7
  To:   Algebraic Field
  Defn: a |--> -2.645751311064591?*I

AUTHORS:

  • ?: initial version.
  • John Cremona:
    • Adapted to handle real embeddings of number fields, September 2008.
    • Added basis_matrix function, November 2008
    • Added support for complex embeddings, May 2009.
    • Added complex elliptic logs, March 2009.
class sage.schemes.elliptic_curves.period_lattice.PeriodLattice(base_ring, rank, degree, sparse=False)

Bases: sage.modules.free_module.FreeModule_generic_pid

The class for the period lattice of an algebraic variety.

class sage.schemes.elliptic_curves.period_lattice.PeriodLattice_ell(E, embedding=None)

Bases: sage.schemes.elliptic_curves.period_lattice.PeriodLattice

The class for the period lattice of an elliptic curve.

Currently supported are elliptic curves defined over \QQ, and elliptic curves defined over a number field with a real or complex embedding, where the lattice constructed depends on that embedding.

basis(*args, **kwds)

Return a basis for this period lattice as a 2-tuple.

INPUT:

  • prec (default: None) – precision in bits (default precision if None).
  • algorithm (string, default ‘sage’) – choice of implementation (for real embeddings only) between ‘sage’ (native Sage implementation) or ‘pari’ (use the pari library: only available for real embeddings).

OUTPUT:

(tuple of Complex) (\omega_1,\omega_2) where the lattice is \ZZ\omega_1 + \ZZ\omega_2. If the lattice is real then \omega_1 is real and positive, \Im(\omega_2)>0 and \Re(\omega_1/\omega_2) is either 0 (for rectangular lattices) or \frac{1}{2} (for non-rectangular lattices). Otherwise, \omega_1/\omega_2 is in the fundamental region of the upper half-plane. If the latter normalisation is required for real lattices, use the function normalised_basis() instead.

EXAMPLES:

sage: E = EllipticCurve('37a')
sage: E.period_lattice().basis()
(2.99345864623196, 2.45138938198679*I)

This shows that the issue reported at trac #3954 is fixed:

sage: E = EllipticCurve('37a')
sage: b1 = E.period_lattice().basis(prec=30)
sage: b2 = E.period_lattice().basis(prec=30)
sage: b1 == b2
True

This shows that the issue reported at trac #4064 is fixed:

sage: E = EllipticCurve('37a')
sage: E.period_lattice().basis(prec=30)[0].parent()
Real Field with 30 bits of precision
sage: E.period_lattice().basis(prec=100)[0].parent()
Real Field with 100 bits of precision
sage: K.<a> = NumberField(x^3-2)
sage: emb = K.embeddings(RealField())[0]
sage: E = EllipticCurve([0,1,0,a,a])
sage: L = E.period_lattice(emb)
sage: L.basis(64)
(3.81452977217854509, 1.90726488608927255 + 1.34047785962440202*I)

sage: emb = K.embeddings(ComplexField())[0]
sage: L = E.period_lattice(emb)
sage: w1,w2 = L.basis(); w1,w2
(-1.37588604166076 - 2.58560946624443*I, -2.10339907847356 + 0.428378776460622*I)
sage: L.is_real()
False
sage: tau = w1/w2; tau
0.387694505032876 + 1.30821088214407*I
basis_matrix(*args, **kwds)

Return the basis matrix of this period lattice.

INPUT:

  • prec (int or None``(default)) -- real precision in bits (default real precision if ``None).
  • normalised (bool, default None) – if True and the embedding is real, use the normalised basis (see normalised_basis()) instead of the default.

OUTPUT:

A 2x2 real matrix whose rows are the lattice basis vectors, after identifying \CC with \RR^2.

EXAMPLES:

sage: E = EllipticCurve('37a')
sage: E.period_lattice().basis_matrix()
[ 2.99345864623196 0.000000000000000]
[0.000000000000000  2.45138938198679]
sage: K.<a> = NumberField(x^3-2)
sage: emb = K.embeddings(RealField())[0]
sage: E = EllipticCurve([0,1,0,a,a])
sage: L = E.period_lattice(emb)
sage: L.basis_matrix(64)
[ 3.81452977217854509 0.000000000000000000]
[ 1.90726488608927255  1.34047785962440202]

See #4388:

sage: L = EllipticCurve('11a1').period_lattice()
sage: L.basis_matrix()
[ 1.26920930427955 0.000000000000000]
[0.634604652139777  1.45881661693850]
sage: L.basis_matrix(normalised=True)
[0.634604652139777 -1.45881661693850]
[-1.26920930427955 0.000000000000000]
sage: L = EllipticCurve('389a1').period_lattice()
sage: L.basis_matrix()
[ 2.49021256085505 0.000000000000000]
[0.000000000000000  1.97173770155165]
sage: L.basis_matrix(normalised=True)
[ 2.49021256085505 0.000000000000000]
[0.000000000000000 -1.97173770155165]
complex_area(prec=None)

Return the area of a fundamental domain for the period lattice of the elliptic curve.

INPUT:

  • prec (int or None``(default)) -- real precision in bits (default real precision if ``None).

EXAMPLES:

sage: E = EllipticCurve('37a')
sage: E.period_lattice().complex_area()
7.33813274078958
sage: K.<a> = NumberField(x^3-2)
sage: embs = K.embeddings(ComplexField())
sage: E = EllipticCurve([0,1,0,a,a])
sage: [E.period_lattice(emb).is_real() for emb in K.embeddings(CC)]
[False, False, True]
sage: [E.period_lattice(emb).complex_area() for emb in embs]
[6.02796894766694, 6.02796894766694, 5.11329270448345]
coordinates(z, rounding=None)

Returns the coordinates of a complex number w.r.t. the lattice basis

INPUT:

  • z (complex) – A complex number.

  • rounding (default None) – whether and how to round the

    output (see below).

OUTPUT:

When rounding is None (the default), returns a tuple of reals x, y such that z=xw_1+yw_2 where w_1, w_2 are a basis for the lattice (normalised in the case of complex embeddings).

When rounding is ‘round’, returns a tuple of integers n_1, n_2 which are the closest integers to the x, y defined above. If z is in the lattice these are the coordinates of z with respect to the lattice basis.

When rounding is ‘floor’, returns a tuple of integers n_1, n_2 which are the integer parts to the x, y defined above. These are used in :meth:.reduce

curve()

Return the elliptic curve associated with this period lattice.

EXAMPLES:

sage: E = EllipticCurve('37a')
sage: L = E.period_lattice()
sage: L.curve() is E
True
sage: K.<a> = NumberField(x^3-2)
sage: E = EllipticCurve([0,1,0,a,a])
sage: L = E.period_lattice(K.embeddings(RealField())[0])
sage: L.curve() is E
True

sage: L = E.period_lattice(K.embeddings(ComplexField())[0])
sage: L.curve() is E
True
ei()

Return the x-coordinates of the 2-division points of the elliptic curve associated with this period lattice, as elements of QQbar.

EXAMPLES:

sage: E = EllipticCurve('37a')
sage: L = E.period_lattice()
sage: L.ei()
[-1.107159871688768?, 0.2695944364054446?, 0.8375654352833230?]
sage: K.<a> = NumberField(x^3-2)
sage: E = EllipticCurve([0,1,0,a,a])
sage: L = E.period_lattice(K.embeddings(RealField())[0])
sage: L.ei()
[0.?e-19 - 1.122462048309373?*I, 0.?e-19 + 1.122462048309373?*I, -1]

sage: L = E.period_lattice(K.embeddings(ComplexField())[0]) sage: L.ei() [-1.000000000000000? + 0.?e-1...*I, -0.9720806486198328? - 0.561231024154687?*I, 0.9720806486198328? + 0.561231024154687?*I]

elliptic_exponential(z, to_curve=True)

Return the elliptic exponential of a complex number.

INPUT:

  • z (complex) – A complex number (viewed modulo this period lattice).
  • to_curve (bool, default True): see below.

OUTPUT:

(Either an elliptic curve point, or a 2-tuple of real or complex numbers). The elliptic exponential of z modulo this period lattice. If to_curve is False this is the pair (x,y) = (\wp(z),\wp'(z)) where \wp denotes the Weierstrass function with respect to this lattice. If to_curve is True it is the point with coordinates (x-b_2/12,y-(a_1(x-b_2/12)-a_3)/2) as a point in E(\CC).

If the lattice is real and z is also real then the output is a pair of real numbers (if to_curve is True), or a point in E(\RR) if to_curve is False.

Note

The precision is taken from that of the input z.

EXAMPLES:

sage: E = EllipticCurve([1,1,1,-8,6])
sage: P = E(0,2)
sage: L = E.period_lattice()
sage: z = L(P); z
2.65289807021917
sage: L.elliptic_exponential(z)
(1.06...e-15 : 2.00000000000000 : 1.00000000000000)
sage: _.curve()
Elliptic Curve defined by y^2 + 1.00000000000000*x*y + 1.00000000000000*y = x^3 + 1.00000000000000*x^2 - 8.00000000000000*x + 6.00000000000000 over Real Field with 53 bits of precision
sage: L.elliptic_exponential(z,False)
(0.416666666666668, 2.50000000000000)
sage: z = L(P,prec=200); z
2.6528980702191653584337189314791830484705213985544997536510
sage: L.elliptic_exponential(z)
(-1.0773...e-60 : 2.0000000000000000000000000000000000000000000000000000000000 : 1.0000000000000000000000000000000000000000000000000000000000)
elliptic_logarithm(P, prec=None)

Return the elliptic logarithm of a point.

INPUT:

  • P (point) – A point on the elliptic curve associated with this period lattice.

  • prec (default: None) – real precision in bits

    (default real precision if None).

OUTPUT:

(complex number) The elliptic logarithm of the point P with respect to this period lattice. If E is the elliptic curve and \sigma:K\to\CC the embedding, the the returned value z is such that z\pmod{L} maps to \sigma(P) under the standard Weierstrass isomorphism from \CC/L to \sigma(E). The output is reduced: it is in the fundamental period parallelogram with respect to the normalised lattice basis.

EXAMPLES:

sage: E = EllipticCurve('389a')
sage: L = E.period_lattice()
sage: E.discriminant() > 0
True
sage: L.real_flag
1
sage: P = E([-1,1])
sage: P.is_on_identity_component ()
False
sage: L.elliptic_logarithm(P, prec=96) 
0.4793482501902193161295330101 + 0.9858688507758241022112038491*I
sage: Q=E([3,5])
sage: Q.is_on_identity_component()     
True
sage: L.elliptic_logarithm(Q, prec=96)                  
1.931128271542559442488585220

Note that this is actually the inverse of the Weierstrass isomorphism:

sage: pari(E).ellztopoint(_)
[3.00000000000000 + 0.E-18*I, 5.00000000000000 + 0.E-18*I]

An example with negative discriminant, and a torsion point:

sage: E = EllipticCurve('11a1')
sage: L = E.period_lattice()
sage: E.discriminant() < 0
True
sage: L.real_flag
-1
sage: P = E([16,-61])
sage: L.elliptic_logarithm(P)
0.253841860855911
sage: L.real_period() / L.elliptic_logarithm(P)
5.00000000000000

An example where precision is problematic:

sage: E = EllipticCurve([1, 0, 1, -85357462, 303528987048]) #18074g1 sage: P = E([4458713781401/835903744, -64466909836503771/24167649046528, 1]) sage: L = E.period_lattice() sage: L.ei() [5334.003952567705? - 1.964393150436?e-6*I, 5334.003952567705? + 1.964393150436?e-6*I, -10668.25790513541?] sage: L.elliptic_logarithm(P,prec=100) 0.27656204014107061464076203097

Some complex exampes, taken from the paper by Cremona and Thongjunthug:

sage: K.<i> = QuadraticField(-1)
sage: a4 = 9*i-10                     
sage: a6 = 21-i                       
sage: E = EllipticCurve([0,0,0,a4,a6])
sage: e1 = 3-2*i; e2 = 1+i; e3 = -4+i
sage: emb = K.embeddings(CC)[1]
sage: L = E.period_lattice(emb)
sage: P = E(2-i,4+2*i)
sage: L.elliptic_logarithm(P,prec=100)
0.70448375537782208460499649302 - 0.79246725643650979858266018068*I
sage: L.elliptic_logarithm(E(e1,0),prec=100)
0.64607575874356525952487867052 + 0.22379609053909448304176885364*I
sage: L.elliptic_logarithm(E(e2,0),prec=100)
0.71330686725892253793705940192 - 0.40481924028150941053684639367*I
sage: L.elliptic_logarithm(E(e3,0),prec=100)
0.067231108515357278412180731396 - 0.62861533082060389357861524731*I
sage: L.coordinates(2*L.elliptic_logarithm(E(e1,0),prec=100))
(1.0000000000000000000000000000, 0.00000000000000000000000000000)
sage: L.coordinates(2*L.elliptic_logarithm(E(e2,0),prec=100))
(1.0000000000000000000000000000, 1.0000000000000000000000000000)
sage: L.coordinates(2*L.elliptic_logarithm(E(e3,0),prec=100))
(0.00000000000000000000000000000, 1.0000000000000000000000000000)
sage: a4 = -78*i + 104
sage: a6 = -216*i - 312
sage: E = EllipticCurve([0,0,0,a4,a6])
sage: emb = K.embeddings(CC)[1]
sage: L = E.period_lattice(emb)
sage: P = E(3+2*i,14-7*i)
sage: L.elliptic_logarithm(P)
0.297147783912228 - 0.546125549639461*I
sage: L.coordinates(L.elliptic_logarithm(P))
(0.628653378040238, 0.371417754610223)
sage: e1 = 1+3*i; e2 = -4-12*i; e3=-e1-e2
sage: L.coordinates(L.elliptic_logarithm(E(e1,0)))
(0.500000000000000, 0.500000000000000)
sage: L.coordinates(L.elliptic_logarithm(E(e2,0)))
(1.00000000000000, 0.500000000000000)
sage: L.coordinates(L.elliptic_logarithm(E(e3,0)))
(0.500000000000000, 0.000000000000000)
is_real()

Return True if this period lattice is real.

EXAMPLES:

sage: f = EllipticCurve('11a')
sage: f.period_lattice().is_real()
True
sage: K.<i> = QuadraticField(-1)
sage: E = EllipticCurve(K,[0,0,0,i,2*i])
sage: emb = K.embeddings(ComplexField())[0]
sage: L = E.period_lattice(emb)
sage: L.is_real()
False
sage: K.<a> = NumberField(x^3-2)
sage: E = EllipticCurve([0,1,0,a,a])
sage: [E.period_lattice(emb).is_real() for emb in K.embeddings(CC)]
[False, False, True]

ALGORITHM:

The lattice is real if it is associated to a real embedding; such lattices are stable under conjugation.

is_rectangular()

Return True if this period lattice is rectangular.

Note

Only defined for real lattices; a RuntimeError is raised for non-real lattices.

EXAMPLES:

sage: f = EllipticCurve('11a')
sage: f.period_lattice().basis()
(1.26920930427955, 0.634604652139777 + 1.45881661693850*I)
sage: f.period_lattice().is_rectangular()
False
sage: f = EllipticCurve('37b')
sage: f.period_lattice().basis()
(1.08852159290423, 1.76761067023379*I)
sage: f.period_lattice().is_rectangular()
True

ALGORITHM:

The period lattice is rectangular precisely if the discriminant of the Weierstrass equation is positive, or equivalently if the number of real components is 2.

normalised_basis(*args, **kwds)

Return a normalised basis for this period lattice as a 2-tuple.

INPUT:

  • prec (default: None) – precision in bits (default precision if None).
  • algorithm (string, default ‘sage’) – choice of implementation (for real embeddings only) between ‘sage’ (native Sage implementation) or ‘pari’ (use the pari library: only available for real embeddings).

OUTPUT:

(tuple of Complex) (\omega_1,\omega_2) where the lattice has the form \ZZ\omega_1 + \ZZ\omega_2. The basis is normalised so that \omega_1/\omega_2 is in the fundamental region of the upper half-plane. For an alternative normalisation for real lattices (with the first period real), use the function basis() instead.

EXAMPLES:

sage: E = EllipticCurve('37a')
sage: E.period_lattice().normalised_basis()
(2.99345864623196, -2.45138938198679*I)
sage: K.<a> = NumberField(x^3-2)
sage: emb = K.embeddings(RealField())[0]
sage: E = EllipticCurve([0,1,0,a,a])
sage: L = E.period_lattice(emb)
sage: L.normalised_basis(64)
(1.90726488608927255 - 1.34047785962440202*I, -1.90726488608927255 - 1.34047785962440202*I)

sage: emb = K.embeddings(ComplexField())[0]
sage: L = E.period_lattice(emb)
sage: w1,w2 = L.normalised_basis(); w1,w2
(-1.37588604166076 - 2.58560946624443*I, -2.10339907847356 + 0.428378776460622*I)
sage: L.is_real()
False
sage: tau = w1/w2; tau
0.387694505032876 + 1.30821088214407*I
omega(prec=None)

Returns the real or complex volume of this period lattice.

INPUT:

  • prec (int or None``(default)) -- real precision in bits (default real precision if ``None)

OUTPUT:

(real) For real lattices, this is the real period times the number of connected components. For non-real lattices it is the complex area.

Note

If the curve is defined over \QQ and is given by a minimal Weierstrass equation, then this is the correct period in the BSD conjecture, i.e., it is the least real period * 2 when the period lattice is rectangular. More generally the product of this quantity over all embeddings appears in the generalised BSD formula.

EXAMPLES:

sage: E = EllipticCurve('37a')
sage: E.period_lattice().omega()
5.98691729246392

This is not a minimal model:

sage: E = EllipticCurve([0,-432*6^2])
sage: E.period_lattice().omega()
0.486109385710056

If you were to plug the above omega into the BSD conjecture, you would get nonsense. The following works though:

sage: F = E.minimal_model()
sage: F.period_lattice().omega()
0.972218771420113
sage: K.<a> = NumberField(x^3-2)
sage: emb = K.embeddings(RealField())[0]
sage: E = EllipticCurve([0,1,0,a,a])
sage: L = E.period_lattice(emb)
sage: L.omega(64)
3.81452977217854509

A complex example (taken from J.E.Cremona and E.Whitley, Periods of cusp forms and elliptic curves over imaginary quadratic fields, Mathematics of Computation 62 No. 205 (1994), 407-429):

sage: K.<i> = QuadraticField(-1)
sage: E = EllipticCurve([0,1-i,i,-i,0])
sage: L = E.period_lattice(K.embeddings(CC)[0])
sage: L.omega()
8.80694160502647
real_period(prec=None, algorithm='sage')

Returns the real period of this period lattice.

INPUT:

  • prec (int or None (default)) – real precision in bits (default real precision if None)
  • algorithm (string, default ‘sage’) – choice of implementation (for real embeddings only) between ‘sage’ (native Sage implementation) or ‘pari’ (use the pari library: only available for real embeddings).

Note

Only defined for real lattices; a RuntimeError is raised for non-real lattices.

EXAMPLES:

sage: E = EllipticCurve('37a')
sage: E.period_lattice().real_period()
2.99345864623196
sage: K.<a> = NumberField(x^3-2)
sage: emb = K.embeddings(RealField())[0]
sage: E = EllipticCurve([0,1,0,a,a])
sage: L = E.period_lattice(emb)
sage: L.real_period(64)         
3.81452977217854509        
reduce(z)

Reduce a complex number modulo the lattice

INPUT:

  • z (complex) – A complex number.

OUTPUT:

(complex) the reduction of z modulo the lattice, lying in the fundamental period parallelogram with respect to the lattice basis. For curves defined over the reals (i.e. real embeddings) the output will be real when possible.

sigma(z, prec=None, flag=0)

Returns the value of the Weierstrass sigma function for this elliptic curve period lattice.

INPUT:

  • z – a complex number

  • prec (default: None) – real precision in bits

    (default real precision if None).

  • flag

    0: (default) ???;

    1: computes an arbitrary determination of log(sigma(z))

    2, 3: same using the product expansion instead of theta series. ???

Note

The reason for the ???’s above, is that the PARI documentation for ellsigma is very vague. Also this is only implemented for curves defined over \QQ.

TODO:

This function does not use any of the PeriodLattice functions and so should be moved to ell_rational_field.

EXAMPLES:

sage: EllipticCurve('389a1').period_lattice().sigma(CC(2,1))
2.60912163570108 - 0.200865080824587*I
sage.schemes.elliptic_curves.period_lattice.extended_agm_iteration(a, b, c)

Internal function for the extended AGM used in elliptic logarithm computation. INPUT:

  • a, b, c (real or complex) – three real or complex numbers.

OUTPUT:

(3-tuple) (a_0,b_0,c_0), the limit of the iteration (a,b,c) \mapsto ((a+b)/2,\sqrt{ab},(c+\sqrt(c^2+b^2-a^2))/2).

EXAMPLES:

sage: from sage.schemes.elliptic_curves.period_lattice import extended_agm_iteration
sage: extended_agm_iteration(RR(1),RR(2),RR(3))
(1.45679103104691, 1.45679103104691, 3.21245294970054)
sage: extended_agm_iteration(CC(1,2),CC(2,3),CC(3,4))
(1.46242448156430 + 2.47791311676267*I,
1.46242448156430 + 2.47791311676267*I,
3.22202144343535 + 4.28383734262540*I)

TESTS:

sage: extended_agm_iteration(1,2,3)
...
ValueError: values must be real or complex numbers
sage.schemes.elliptic_curves.period_lattice.normalise_periods(w1, w2)

Normalise the period basis (w_1,w_2) so that w_1/w_2 is in the fundamental region.

INPUT:

  • w1,w2 (complex) – two complex numbers with non-real ratio

OUTPUT:

(tuple) ((\omega_1',\omega_2'),[a,b,c,d]) where a,b,c,d are integers such that

  • ad-bc=\pm1;
  • (\omega_1',\omega_2') = (a\omega_1+b\omega_2,c\omega_1+d\omega_2);
  • \tau=\omega_1'/\omega_2' is in the upper half plane;
  • |\tau|\ge1 and |\Re(\tau)|\le\frac{1}{2}.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.period_lattice import reduce_tau, normalise_periods
sage: w1 = CC(1.234, 3.456)
sage: w2 = CC(1.234, 3.456000001)
sage: w1/w2    # in lower half plane!
0.999999999743367 - 9.16334785827644e-11*I
sage: w1w2, abcd = normalise_periods(w1,w2)
sage: a,b,c,d = abcd
sage: w1w2 == (a*w1+b*w2, c*w1+d*w2)
True
sage: w1w2[0]/w1w2[1]
1.23400010389203e9*I
sage: a*d-b*c # note change of orientation
-1
sage.schemes.elliptic_curves.period_lattice.reduce_tau(tau)

Transform a point in the upper half plane to the fundamental region.

INPUT:

  • tau (complex) – a complex number with positive imaginary part

OUTPUT:

(tuple) (\tau',[a,b,c,d]) where a,b,c,d are integers such that

  • ad-bc=1;
  • \tau`=(a\tau+b)/(c\tau+d);
  • |\tau'|\ge1;
  • |\Re(\tau')|\le\frac{1}{2}.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.period_lattice import reduce_tau
sage: reduce_tau(CC(1.23,3.45))
(0.230000000000000 + 3.45000000000000*I, [1, -1, 0, 1])
sage: reduce_tau(CC(1.23,0.0345))
(-0.463960069171512 + 1.35591888067914*I, [-5, 6, 4, -5])
sage: reduce_tau(CC(1.23,0.0000345))
(0.130000000001761 + 2.89855072463768*I, [13, -16, 100, -123])

Previous topic

Weierstrass \wp function for elliptic curves.

Next topic

Formal groups of elliptic curves.

This Page