Kodaira symbols encode the type of reduction of an elliptic curve at a (finite) place.
The standard notation for Kodaira Symbols is as a string which is one
of ,
,
,
,
,
,
,
, where
denotes a
non-negative integer. These have been encoded by single integers by
different people. For convenience we give here the conversion table
between strings, the eclib coding and the pari encoding.
Kodaira Symbol | Eclib coding | Pari Coding |
---|---|---|
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() |
![]() |
![]() |
![]() ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
AUTHORS:
Returns the specified Kodaira symbol.
INPUT:
OUTPUT:
(KodairaSymbol) The corresponding Kodaira symbol.
EXAMPLES:
sage: KS = KodairaSymbol
sage: [KS(n) for n in range(1,10)]
[I0, II, III, IV, I1, I2, I3, I4, I5]
sage: [KS(-n) for n in range(1,10)]
[I0*, II*, III*, IV*, I1*, I2*, I3*, I4*, I5*]
sage: all([KS(str(KS(n)))==KS(n) for n in range(-10,10) if n!=0])
True
Bases: sage.structure.sage_object.SageObject
Class to hold a Kodaira symbol of an elliptic curve over a
-adic local field.
Users should use the KodairaSymbol() function to construct Kodaira Symbols rather than use the class constructor directly.