Kodaira symbols encode the type of reduction of an elliptic curve at a (finite) place.
The standard notation for Kodaira Symbols is as a string which is one
of
,
,
,
,
,
,
,
, where
denotes a
non-negative integer. These have been encoded by single integers by
different people. For convenience we give here the conversion table
between strings, the eclib coding and the pari encoding.
| Kodaira Symbol | Eclib coding | Pari Coding |
|---|---|---|
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
AUTHORS:
Returns the specified Kodaira symbol.
INPUT:
OUTPUT:
(KodairaSymbol) The corresponding Kodaira symbol.
EXAMPLES:
sage: KS = KodairaSymbol
sage: [KS(n) for n in range(1,10)]
[I0, II, III, IV, I1, I2, I3, I4, I5]
sage: [KS(-n) for n in range(1,10)]
[I0*, II*, III*, IV*, I1*, I2*, I3*, I4*, I5*]
sage: all([KS(str(KS(n)))==KS(n) for n in range(-10,10) if n!=0])
True
Bases: sage.structure.sage_object.SageObject
Class to hold a Kodaira symbol of an elliptic curve over a
-adic local field.
Users should use the KodairaSymbol() function to construct Kodaira Symbols rather than use the class constructor directly.