Let be an elliptic curve defined over the
-adic numbers
.
Suppose that
has multiplicative reduction, i.e. that the
-invariant
of
has negative valuation, say
. Then there exists a parameter
in
of valuation
such that the points of
defined over
the algebraic closure
are in bijection with
. More precisely there exists
the series
and
such that the
curve is isomorphic to
over
(or over
if the reduction is split multiplicative). There is
-adic analytic map from
to this curve with kernel
.
Points of good reduction correspond to points of valuation
in
.
See chapter V of [Sil2] for more details.
REFERENCES :
GTM 151, Springer 1994.
AUTHORS:
Bases: sage.structure.sage_object.SageObject
Tate’s -adic uniformisation of an elliptic curve with
multiplicative reduction.
Note
Some of the methods of this Tate curve only work when the
reduction is split multiplicative over .
EXAMPLES:
sage: e = EllipticCurve('130a1')
sage: eq = e.tate_curve(5); eq
5-adic Tate curve associated to the Elliptic Curve defined by y^2 + x*y + y = x^3 - 33*x + 68 over Rational Field
sage: eq == loads(dumps(eq))
True
REFERENCES :
Returns the value of the -adic Eisenstein series of weight 2 evaluated on the elliptic
curve having split multiplicative reduction.
INPUT:
EXAMPLES:
sage: eq = EllipticCurve('130a1').tate_curve(5)
sage: eq.E2(prec=10)
4 + 2*5^2 + 2*5^3 + 5^4 + 2*5^5 + 5^7 + 5^8 + 2*5^9 + O(5^10)
sage: T = EllipticCurve('14').tate_curve(7)
sage: T.E2(30)
2 + 4*7 + 7^2 + 3*7^3 + 6*7^4 + 5*7^5 + 2*7^6 + 7^7 + 5*7^8 + 6*7^9 + 5*7^10 + 2*7^11 + 6*7^12 + 4*7^13 + 3*7^15 + 5*7^16 + 4*7^17 + 4*7^18 + 2*7^20 + 7^21 + 5*7^22 + 4*7^23 + 4*7^24 + 3*7^25 + 6*7^26 + 3*7^27 + 6*7^28 + O(7^30)
Returns the mysterious -invariant associated
to an elliptic curve with split multiplicative reduction. One
instance where this constant appears is in the exceptional
case of the
-adic Birch and Swinnerton-Dyer conjecture as
formulated in [MTT]. See [Col] for a detailed discussion.
INPUT:
REFERENCES:
EXAMPLES:
sage: eq = EllipticCurve('130a1').tate_curve(5)
sage: eq.L_invariant(prec=10)
5^3 + 4*5^4 + 2*5^5 + 2*5^6 + 2*5^7 + 3*5^8 + 5^9 + O(5^10)
Returns the -adic elliptic curve of the form
.
This curve with split multiplicative reduction is isomorphic to the given curve
over the algebraic closure of
.
INPUT:
EXAMPLES:
sage: eq = EllipticCurve('130a1').tate_curve(5)
sage: eq.curve(prec=5)
Elliptic Curve defined by y^2 + (1+O(5^5))*x*y = x^3 +
(2*5^4+5^5+2*5^6+5^7+3*5^8+O(5^9))*x + (2*5^3+5^4+2*5^5+5^7+O(5^8)) over 5-adic
Field with capped relative precision 5
Returns True if the given elliptic curve has split multiplicative reduction.
EXAMPLES:
sage: eq = EllipticCurve('130a1').tate_curve(5)
sage: eq.is_split()
True
sage: eq = EllipticCurve('37a1').tate_curve(37)
sage: eq.is_split()
False
Given a point in the formal group of the elliptic curve
with split multiplicative reduction,
this produces an element
in
mapped to the point
by the Tate parametrisation.
The algorithm return the unique such element in
.
INPUT:
EXAMPLES:
sage: e = EllipticCurve('130a1')
sage: eq = e.tate_curve(5)
sage: P = e([-6,10])
sage: l = eq.lift(12*P, prec=10); l
1 + 4*5 + 5^3 + 5^4 + 4*5^5 + 5^6 + 5^7 + 4*5^8 + 5^9 + O(5^10)
Now we map the lift l back and check that it is indeed right.:
sage: eq.parametrisation_onto_original_curve(l)
(4*5^-2 + 2*5^-1 + 4*5 + 3*5^3 + 5^4 + 2*5^5 + 4*5^6 + O(5^7) : 2*5^-3 + 5^-1 + 4 + 4*5 + 5^2 + 3*5^3 + 4*5^4 + O(5^6) : 1 + O(5^20))
sage: e5 = e.change_ring(Qp(5,9))
sage: e5(12*P)
(4*5^-2 + 2*5^-1 + 4*5 + 3*5^3 + 5^4 + 2*5^5 + 4*5^6 + O(5^7) : 2*5^-3 + 5^-1 + 4 + 4*5 + 5^2 + 3*5^3 + 4*5^4 + O(5^6) : 1 + O(5^9))
Returns the elliptic curve the Tate curve was constructed from.
EXAMPLES:
sage: eq = EllipticCurve('130a1').tate_curve(5)
sage: eq.original_curve()
Elliptic Curve defined by y^2 + x*y + y = x^3 - 33*x + 68 over Rational Field
Returns the canonical -adic height function on the original curve.
INPUT:
OUTPUT:
EXAMPLES:
sage: e = EllipticCurve('130a1')
sage: eq = e.tate_curve(5)
sage: h = eq.padic_height(prec=10)
sage: P=e.gens()[0]
sage: h(P)
2*5^-1 + 1 + 2*5 + 2*5^2 + 3*5^3 + 3*5^6 + 5^7 + O(5^8)
Check that it is a quadratic function:
sage: h(3*P)-3^2*h(P)
O(5^8)
Computes the canonical -adic regulator on the extended Mordell-Weil group as in [MTT]
(with the correction of [Wer] and sign convention in [SW].)
The
-adic Birch and Swinnerton-Dyer conjecture
predicts that this value appears in the formula for the leading term of the
-adic L-function.
INPUT:
REFERENCES:
EXAMPLES:
sage: eq = EllipticCurve('130a1').tate_curve(5)
sage: eq.padic_regulator()
2*5^-1 + 1 + 2*5 + 2*5^2 + 3*5^3 + 3*5^6 + 5^7 + 3*5^9 + 3*5^10 + 3*5^12 + 4*5^13 + 3*5^15 + 2*5^16 + 3*5^18 + 4*5^19 + O(5^20)
Returns the Tate parameter such that the curve is isomorphic
over the algebraic closure of
to the curve
.
INPUT:
EXAMPLES:
sage: eq = EllipticCurve('130a1').tate_curve(5)
sage: eq.parameter(prec=5)
3*5^3 + 3*5^4 + 2*5^5 + 2*5^6 + 3*5^7 + O(5^8)
Given an element in
, this computes its image on the original curve
under the
-adic uniformisation of
.
INPUT:
EXAMPLES:
sage: eq = EllipticCurve('130a1').tate_curve(5)
sage: eq.parametrisation_onto_original_curve(1+5+5^2+O(5^10))
(4*5^-2 + 4*5^-1 + 4 + 2*5^3 + 3*5^4 + 2*5^6 + O(5^7) :
3*5^-3 + 5^-2 + 4*5^-1 + 1 + 4*5 + 5^2 + 3*5^5 + O(5^6) : 1 + O(5^20))
Here is how one gets a 4-torsion point on over
:
sage: R = Qp(5,10)
sage: i = R(-1).sqrt()
sage: T = eq.parametrisation_onto_original_curve(i); T
(2 + 3*5 + 4*5^2 + 2*5^3 + 5^4 + 4*5^5 + 2*5^7 + 5^8 + 5^9 + O(5^10) :
3*5 + 5^2 + 5^4 + 3*5^5 + 3*5^7 + 2*5^8 + 4*5^9 + O(5^10) : 1 + O(5^20))
sage: 4*T
(0 : 1 + O(5^20) : 0)
Given an element in
, this computes its image on the Tate curve
under the
-adic uniformisation of
.
INPUT:
EXAMPLES:
sage: eq = EllipticCurve('130a1').tate_curve(5)
sage: eq.parametrisation_onto_tate_curve(1+5+5^2+O(5^10))
(5^-2 + 4*5^-1 + 1 + 2*5 + 3*5^2 + 2*5^5 + 3*5^6 + O(5^7) :
4*5^-3 + 2*5^-1 + 4 + 2*5 + 3*5^4 + 2*5^5 + O(5^6) : 1 + O(5^20))
Returns the residual characteristic .
EXAMPLES:
sage: eq = EllipticCurve('130a1').tate_curve(5)
sage: eq.original_curve()
Elliptic Curve defined by y^2 + x*y + y = x^3 - 33*x + 68 over Rational Field
sage: eq.prime()
5