Bases: sage.modular.hecke.element.HeckeModuleElement
An element of a space of modular symbols.
TESTS:
sage: x = ModularSymbols(3, 12).cuspidal_submodule().gen(0)
sage: x == loads(dumps(x))
True
Return a list of the coordinates of self in terms of a basis for the ambient space.
EXAMPLE:
sage: ModularSymbols(37, 2).0.list()
[1, 0, 0, 0, 0]
Returns a representation of self as a formal sum of Manin symbols.
EXAMPLE:
sage: x = ModularSymbols(37, 4).0
sage: x.manin_symbol_rep()
[X^2,(0,1)]
The result is cached:
sage: x.manin_symbol_rep() is x.manin_symbol_rep()
True
Returns a representation of self as a formal sum of modular symbols.
EXAMPLE:
sage: x = ModularSymbols(37, 4).0
sage: x.modular_symbol_rep()
X^2*{0, Infinity}
The result is cached:
sage: x.modular_symbol_rep() is x.modular_symbol_rep()
True
Return True if x is an element of a modular symbols space.
EXAMPLES:
sage: sage.modular.modsym.element.is_ModularSymbolsElement(ModularSymbols(11, 2).0)
True
sage: sage.modular.modsym.element.is_ModularSymbolsElement(13)
False
Set the mode for printing of elements of modular symbols spaces.
INPUT:
OUTPUT: none
EXAMPLE:
sage: M = ModularSymbols(13, 8)
sage: x = M.0 + M.1 + M.14
sage: set_modsym_print_mode('manin'); x
[X^5*Y,(1,11)] + [X^5*Y,(1,12)] + [X^6,(1,11)]
sage: set_modsym_print_mode('modular'); x
1610510*X^6*{-1/11, 0} - 248832*X^6*{-1/12, 0} + 893101*X^5*Y*{-1/11, 0} - 103680*X^5*Y*{-1/12, 0} + 206305*X^4*Y^2*{-1/11, 0} - 17280*X^4*Y^2*{-1/12, 0} + 25410*X^3*Y^3*{-1/11, 0} - 1440*X^3*Y^3*{-1/12, 0} + 1760*X^2*Y^4*{-1/11, 0} - 60*X^2*Y^4*{-1/12, 0} + 65*X*Y^5*{-1/11, 0} - X*Y^5*{-1/12, 0} + Y^6*{-1/11, 0}
sage: set_modsym_print_mode('vector'); x
(1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0)
sage: set_modsym_print_mode()