For design documentation see sage.matrix.docs.
TESTS:
sage: A = Matrix(GF(5),3,3,srange(9))
sage: TestSuite(A).run()
Bases: sage.matrix.matrix0.Matrix
Return the augmented matrix of the form:
[self | other].
EXAMPLES:
sage: M = MatrixSpace(QQ,2,2)
sage: A = M([1,2, 3,4])
sage: A
[1 2]
[3 4]
sage: N = MatrixSpace(QQ,2,1)
sage: B = N([9,8])
sage: B
[9]
[8]
sage: A.augment(B)
[1 2 9]
[3 4 8]
sage: B.augment(A)
[9 1 2]
[8 3 4]
sage: M = MatrixSpace(QQ,3,4)
sage: A = M([1,2,3,4, 0,9,8,7, 2/3,3/4,4/5,9/8])
sage: A
[ 1 2 3 4]
[ 0 9 8 7]
[2/3 3/4 4/5 9/8]
sage: N = MatrixSpace(QQ,3,2)
sage: B = N([1,2, 3,4, 4,5])
sage: B
[1 2]
[3 4]
[4 5]
sage: A.augment(B)
[ 1 2 3 4 1 2]
[ 0 9 8 7 3 4]
[2/3 3/4 4/5 9/8 4 5]
sage: B.augment(A)
[ 1 2 1 2 3 4]
[ 3 4 0 9 8 7]
[ 4 5 2/3 3/4 4/5 9/8]
AUTHORS:
Return the block matrix that has self and other on the diagonal:
[ self 0 ]
[ 0 other ]
EXAMPLES:
sage: A = matrix(QQ[['t']], 2, range(1, 5))
sage: A.block_sum(100*A)
[ 1 2 0 0]
[ 3 4 0 0]
[ 0 0 100 200]
[ 0 0 300 400]
Return the i‘th column of this matrix as a vector.
This column is a dense vector if and only if the matrix is a dense matrix.
INPUT:
EXAMPLES:
sage: a = matrix(2,3,range(6)); a
[0 1 2]
[3 4 5]
sage: a.column(1)
(1, 4)
If the column is negative, it wraps around, just like with list indexing, e.g., -1 gives the right-most column:
sage: a.column(-1)
(2, 5)
TESTS:
sage: a = matrix(2,3,range(6)); a
[0 1 2]
[3 4 5]
sage: a.column(3)
...
IndexError: column index out of range
sage: a.column(-4)
...
IndexError: column index out of range
Return a list of the columns of self.
INPUT:
of columns which is safe to change.
If self is sparse, returns columns as sparse vectors, and if self is dense returns them as dense vectors.
EXAMPLES:
sage: matrix(3, [1..9]).columns()
[(1, 4, 7), (2, 5, 8), (3, 6, 9)]
sage: matrix(RR, 2, [sqrt(2), pi, exp(1), 0]).columns()
[(1.41421356237310, 2.71828182845905), (3.14159265358979, 0.000000000000000)]
sage: matrix(RR, 0, 2, []).columns()
[(), ()]
sage: matrix(RR, 2, 0, []).columns()
[]
sage: m = matrix(RR, 3, 3, {(1,2): pi, (2, 2): -1, (0,1): sqrt(2)})
sage: parent(m.columns()[0])
Sparse vector space of dimension 3 over Real Field with 53 bits of precision
Return list of the dense columns of self.
INPUT:
EXAMPLES:
An example over the integers:
sage: a = matrix(3,3,range(9)); a
[0 1 2]
[3 4 5]
[6 7 8]
sage: a.dense_columns()
[(0, 3, 6), (1, 4, 7), (2, 5, 8)]
We do an example over a polynomial ring:
sage: R.<x> = QQ[ ]
sage: a = matrix(R, 2, [x,x^2, 2/3*x,1+x^5]); a
[ x x^2]
[ 2/3*x x^5 + 1]
sage: a.dense_columns()
[(x, 2/3*x), (x^2, x^5 + 1)]
sage: a = matrix(R, 2, [x,x^2, 2/3*x,1+x^5], sparse=True)
sage: c = a.dense_columns(); c
[(x, 2/3*x), (x^2, x^5 + 1)]
sage: parent(c[1])
Ambient free module of rank 2 over the principal ideal domain Univariate Polynomial Ring in x over Rational Field
If this matrix is sparse, return a dense matrix with the same entries. If this matrix is dense, return this matrix (not a copy).
Note
The definition of “dense” and “sparse” in Sage have nothing to do with the number of nonzero entries. Sparse and dense are properties of the underlying representation of the matrix.
EXAMPLES:
sage: A = MatrixSpace(QQ,2, sparse=True)([1,2,0,1])
sage: A.is_sparse()
True
sage: B = A.dense_matrix()
sage: B.is_sparse()
False
sage: A*B
[1 4]
[0 1]
sage: A.parent()
Full MatrixSpace of 2 by 2 sparse matrices over Rational Field
sage: B.parent()
Full MatrixSpace of 2 by 2 dense matrices over Rational Field
In Sage, the product of a sparse and a dense matrix is always dense:
sage: (A*B).parent()
Full MatrixSpace of 2 by 2 dense matrices over Rational Field
sage: (B*A).parent()
Full MatrixSpace of 2 by 2 dense matrices over Rational Field
TESTS:
Make sure that subdivisions are preserved when switching between dense and sparse matrices:
sage: a = matrix(ZZ, 3, range(9))
sage: a.subdivide([1,2],2)
sage: a.get_subdivisions()
([1, 2], [2])
sage: b = a.sparse_matrix().dense_matrix()
sage: b.get_subdivisions()
([1, 2], [2])
Return list of the dense rows of self.
INPUT:
EXAMPLES:
sage: m = matrix(3, range(9)); m
[0 1 2]
[3 4 5]
[6 7 8]
sage: v = m.dense_rows(); v
[(0, 1, 2), (3, 4, 5), (6, 7, 8)]
sage: v is m.dense_rows()
False
sage: m.dense_rows(copy=False) is m.dense_rows(copy=False)
True
sage: m[0,0] = 10
sage: m.dense_rows()
[(10, 1, 2), (3, 4, 5), (6, 7, 8)]
Return lift of self to the covering ring of the base ring R, which is by definition the ring returned by calling cover_ring() on R, or just R itself if the cover_ring method is not defined.
EXAMPLES:
sage: M = Matrix(Integers(7), 2, 2, [5, 9, 13, 15]) ; M
[5 2]
[6 1]
sage: M.lift()
[5 2]
[6 1]
sage: parent(M.lift())
Full MatrixSpace of 2 by 2 dense matrices over Integer Ring
The field QQ doesn’t have a cover_ring method:
sage: hasattr(QQ, 'cover_ring')
False
So lifting a matrix over QQ gives back the same exact matrix.
sage: B = matrix(QQ, 2, [1..4])
sage: B.lift()
[1 2]
[3 4]
sage: B.lift() is B
True
Return the matrix constructed from self using columns with indices in the columns list.
EXAMPLES:
sage: M = MatrixSpace(Integers(8),3,3)
sage: A = M(range(9)); A
[0 1 2]
[3 4 5]
[6 7 0]
sage: A.matrix_from_columns([2,1])
[2 1]
[5 4]
[0 7]
Return the matrix constructed from self using rows with indices in the rows list.
EXAMPLES:
sage: M = MatrixSpace(Integers(8),3,3)
sage: A = M(range(9)); A
[0 1 2]
[3 4 5]
[6 7 0]
sage: A.matrix_from_rows([2,1])
[6 7 0]
[3 4 5]
Return the matrix constructed from self from the given rows and columns.
EXAMPLES:
sage: M = MatrixSpace(Integers(8),3,3)
sage: A = M(range(9)); A
[0 1 2]
[3 4 5]
[6 7 0]
sage: A.matrix_from_rows_and_columns([1], [0,2])
[3 5]
sage: A.matrix_from_rows_and_columns([1,2], [1,2])
[4 5]
[7 0]
Note that row and column indices can be reordered or repeated:
sage: A.matrix_from_rows_and_columns([2,1], [2,1])
[0 7]
[5 4]
For example here we take from row 1 columns 2 then 0 twice, and do this 3 times.
sage: A.matrix_from_rows_and_columns([1,1,1],[2,0,0])
[5 3 3]
[5 3 3]
[5 3 3]
AUTHORS:
Return copy of this matrix, but with entries viewed as elements of the fraction field of the base ring (assuming it is defined).
EXAMPLES:
sage: A = MatrixSpace(IntegerRing(),2)([1,2,3,4])
sage: B = A.matrix_over_field()
sage: B
[1 2]
[3 4]
sage: B.parent()
Full MatrixSpace of 2 by 2 dense matrices over Rational Field
Return the ambient matrix space of self.
INPUT:
EXAMPLES:
sage: m = matrix(3, [1..9])
sage: m.matrix_space()
Full MatrixSpace of 3 by 3 dense matrices over Integer Ring
sage: m.matrix_space(ncols=2)
Full MatrixSpace of 3 by 2 dense matrices over Integer Ring
sage: m.matrix_space(1)
Full MatrixSpace of 1 by 3 dense matrices over Integer Ring
sage: m.matrix_space(1, 2, True)
Full MatrixSpace of 1 by 2 sparse matrices over Integer Ring
Create a matrix in the parent of this matrix with the given number of rows, columns, etc. The default parameters are the same as for self.
INPUT:
These three variables get sent to matrix_space():
The remaining three variables (coerce, entries, and copy) are used by sage.matrix.matrix_space.MatrixSpace() to construct the new matrix.
Warning
This function called with no arguments returns the zero matrix of the same dimension and sparseness of self.
EXAMPLES:
sage: A = matrix(ZZ,2,2,[1,2,3,4]); A [1 2] [3 4] sage: A.new_matrix() [0 0] [0 0] sage: A.new_matrix(1,1) [0] sage: A.new_matrix(3,3).parent() Full MatrixSpace of 3 by 3 dense matrices over Integer Ring
sage: A = matrix(RR,2,3,[1.1,2.2,3.3,4.4,5.5,6.6]); A
[1.10000000000000 2.20000000000000 3.30000000000000]
[4.40000000000000 5.50000000000000 6.60000000000000]
sage: A.new_matrix()
[0.000000000000000 0.000000000000000 0.000000000000000]
[0.000000000000000 0.000000000000000 0.000000000000000]
sage: A.new_matrix().parent()
Full MatrixSpace of 2 by 3 dense matrices over Real Field with 53 bits of precision
Return the Numpy matrix associated to this matrix.
INPUT:
EXAMPLES:
sage: a = matrix(3,range(12))
sage: a.numpy()
array([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]])
sage: a.numpy('f')
array([[ 0., 1., 2., 3.],
[ 4., 5., 6., 7.],
[ 8., 9., 10., 11.]], dtype=float32)
sage: a.numpy('d')
array([[ 0., 1., 2., 3.],
[ 4., 5., 6., 7.],
[ 8., 9., 10., 11.]])
sage: a.numpy('B')
array([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]], dtype=uint8)
Type numpy.typecodes for a list of the possible typecodes:
sage: import numpy
sage: sorted(numpy.typecodes.items())
[('All', '?bhilqpBHILQPfdgFDGSUVO'), ('AllFloat', 'fdgFDG'), ('AllInteger', 'bBhHiIlLqQpP'), ('Character', 'c'), ('Complex', 'FDG'), ('Float', 'fdg'), ('Integer', 'bhilqp'), ('UnsignedInteger', 'BHILQP')]
Alternatively, numpy automatically calls this function (via the magic __array__() method) to convert Sage matrices to numpy arrays:
sage: import numpy
sage: b=numpy.array(a); b
array([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]])
sage: b.dtype
dtype('int32') # 32-bit
dtype('int64') # 64-bit
sage: b.shape
(3, 4)
Return the i‘th row of this matrix as a vector.
This row is a dense vector if and only if the matrix is a dense matrix.
INPUT:
EXAMPLES:
sage: a = matrix(2,3,range(6)); a
[0 1 2]
[3 4 5]
sage: a.row(0)
(0, 1, 2)
sage: a.row(1)
(3, 4, 5)
sage: a.row(-1) # last row
(3, 4, 5)
TESTS:
sage: a = matrix(2,3,range(6)); a
[0 1 2]
[3 4 5]
sage: a.row(2)
...
IndexError: row index out of range
sage: a.row(-3)
...
IndexError: row index out of range
Return a list of the rows of self.
INPUT:
If self is sparse, returns rows as sparse vectors, and if self is dense returns them as dense vectors.
EXAMPLES:
sage: matrix(3, [1..9]).rows()
[(1, 2, 3), (4, 5, 6), (7, 8, 9)]
sage: matrix(RR, 2, [sqrt(2), pi, exp(1), 0]).rows()
[(1.41421356237310, 3.14159265358979), (2.71828182845905, 0.000000000000000)]
sage: matrix(RR, 0, 2, []).rows()
[]
sage: matrix(RR, 2, 0, []).rows()
[(), ()]
sage: m = matrix(RR, 3, 3, {(1,2): pi, (2, 2): -1, (0,1): sqrt(2)})
sage: parent(m.rows()[0])
Sparse vector space of dimension 3 over Real Field with 53 bits of precision
Sets the entries of column col in self to be the entries of v.
EXAMPLES:
sage: A = matrix([[1,2],[3,4]]); A
[1 2]
[3 4]
sage: A.set_column(0, [0,0]); A
[0 2]
[0 4]
sage: A.set_column(1, [0,0]); A
[0 0]
[0 0]
sage: A.set_column(2, [0,0]); A
...
IndexError: index out of range
sage: A.set_column(0, [0,0,0])
...
ValueError: v must be of length 2
Sets the entries of row row in self to be the entries of v.
EXAMPLES:
sage: A = matrix([[1,2],[3,4]]); A
[1 2]
[3 4]
sage: A.set_row(0, [0,0]); A
[0 0]
[3 4]
sage: A.set_row(1, [0,0]); A
[0 0]
[0 0]
sage: A.set_row(2, [0,0]); A
...
IndexError: index out of range
sage: A.set_row(0, [0,0,0])
...
ValueError: v must be of length 2
Return list of the sparse columns of self.
INPUT:
modify it safely
EXAMPLES:
sage: a = matrix(2,3,range(6)); a
[0 1 2]
[3 4 5]
sage: v = a.sparse_columns(); v
[(0, 3), (1, 4), (2, 5)]
sage: v[1].is_sparse()
True
If this matrix is dense, return a sparse matrix with the same entries. If this matrix is sparse, return this matrix (not a copy).
Note
The definition of “dense” and “sparse” in Sage have nothing to do with the number of nonzero entries. Sparse and dense are properties of the underlying representation of the matrix.
EXAMPLES:
sage: A = MatrixSpace(QQ,2, sparse=False)([1,2,0,1])
sage: A.is_sparse()
False
sage: B = A.sparse_matrix()
sage: B.is_sparse()
True
sage: A
[1 2]
[0 1]
sage: B
[1 2]
[0 1]
sage: A*B
[1 4]
[0 1]
sage: A.parent()
Full MatrixSpace of 2 by 2 dense matrices over Rational Field
sage: B.parent()
Full MatrixSpace of 2 by 2 sparse matrices over Rational Field
sage: (A*B).parent()
Full MatrixSpace of 2 by 2 dense matrices over Rational Field
sage: (B*A).parent()
Full MatrixSpace of 2 by 2 dense matrices over Rational Field
Return list of the sparse rows of self.
INPUT:
modify it safely
EXAMPLES:
sage: m = Mat(ZZ,3,3,sparse=True)(range(9)); m
[0 1 2]
[3 4 5]
[6 7 8]
sage: v = m.sparse_rows(); v
[(0, 1, 2), (3, 4, 5), (6, 7, 8)]
sage: m.sparse_rows(copy=False) is m.sparse_rows(copy=False)
True
sage: v[1].is_sparse()
True
sage: m[0,0] = 10
sage: m.sparse_rows()
[(10, 1, 2), (3, 4, 5), (6, 7, 8)]
Return the augmented matrix self on top of other:
[ self ]
[ other ]
EXAMPLES:
sage: M = Matrix(QQ, 2, 3, range(6))
sage: N = Matrix(QQ, 1, 3, [10,11,12])
sage: M.stack(N)
[ 0 1 2]
[ 3 4 5]
[10 11 12]
Return the matrix constructed from self using the specified range of rows and columns.
INPUT:
SEE ALSO:
The functions matrix_from_rows(), matrix_from_columns(), and matrix_from_rows_and_columns() allow one to select arbitrary subsets of rows and/or columns.
EXAMPLES:
Take the submatrix starting from entry (1,1) in a matrix:
sage: m = matrix(4, [1..16])
sage: m.submatrix(1, 1)
[ 6 7 8]
[10 11 12]
[14 15 16]
Same thing, except take only two rows:
sage: m.submatrix(1, 1, 2)
[ 6 7 8]
[10 11 12]
And now take only one column:
sage: m.submatrix(1, 1, 2, 1)
[ 6]
[10]
You can take zero rows or columns if you want:
sage: m.submatrix(1, 1, 0)
[]
sage: parent(m.submatrix(1, 1, 0))
Full MatrixSpace of 0 by 3 dense matrices over Integer Ring