Symmetric functions defined by orthogonality and triangularity.

One characterization of Schur functions is that they are upper triangularly related to the monomial symmetric functions and orthogonal with respect to the Hall scalar product. We can use the class SymmetricFunctionAlgebra_orthotriang to obtain the Schur functions from this definition.

sage: from sage.combinat.sf.sfa import zee
sage: from sage.combinat.sf.orthotriang import SymmetricFunctionAlgebra_orthotriang
sage: m = SFAMonomial(QQ)
sage: s =  SymmetricFunctionAlgebra_orthotriang(QQ, m, zee, 's', 'Schur functions')
sage: s([2,1])^2
s[2, 2, 1, 1] + s[2, 2, 2] + s[3, 1, 1, 1] + 2*s[3, 2, 1] + s[3, 3] + s[4, 1, 1] + s[4, 2]
sage: s2 = SFASchur(QQ)
sage: s2([2,1])^2
s[2, 2, 1, 1] + s[2, 2, 2] + s[3, 1, 1, 1] + 2*s[3, 2, 1] + s[3, 3] + s[4, 1, 1] + s[4, 2]
class sage.combinat.sf.orthotriang.SymmetricFunctionAlgebra_orthotriang(R, base, scalar, prefix, name, leading_coeff=None)

Bases: sage.combinat.sf.sfa.SymmetricFunctionAlgebra_generic

class Element(M, x)
Bases: sage.combinat.sf.sfa.SymmetricFunctionAlgebra_generic_Element

Previous topic

Generic dual bases symmetric functions

Next topic

Kostka-Foulkes Polynomials

This Page