This module provides routines for converting new symbolic expressions to other types. Primarily, it provides a class Converter which will walk the expression tree and make calls to methods overridden by subclasses.
Bases: sage.symbolic.expression_conversions.Converter
Convert a symbolic expression to an algebraic number.
EXAMPLES:
sage: from sage.symbolic.expression_conversions import AlgebraicConverter
sage: f = 2^(1/2)
sage: a = AlgebraicConverter(QQbar)
sage: a.arithmetic(f, f.operator())
1.414213562373095?
Coerce to an algebraic number.
EXAMPLES:
sage: from sage.symbolic.expression_conversions import AlgebraicConverter
sage: a = AlgebraicConverter(QQbar)
sage: a.composition(exp(I*pi/3), exp)
0.500000000000000? + 0.866025403784439?*I
sage: a.composition(sin(pi/5), sin)
0.5877852522924731? + 0.?e-18*I
EXAMPLES:
sage: from sage.symbolic.expression_conversions import AlgebraicConverter
sage: a = AlgebraicConverter(QQbar)
sage: f = SR(2)
sage: a.pyobject(f, f.pyobject())
2
sage: _.parent()
Algebraic Field
Bases: object
The input to this method is a symbolic expression and the infix operator corresponding to that expression. Typically, one will convert all of the arguments and then perform the operation afterward.
TESTS:
sage: from sage.symbolic.expression_conversions import Converter
sage: f = x + 2
sage: Converter().arithmetic(f, f.operator())
...
NotImplementedError: arithmetic
The input to this method is a symbolic expression and its operator. This method will get called when you have a symbolic function application.
TESTS:
sage: from sage.symbolic.expression_conversions import Converter
sage: f = sin(2)
sage: Converter().composition(f, f.operator())
...
NotImplementedError: composition
The input to this method is a symbolic expression which corresponds to a relation.
TESTS:
sage: from sage.symbolic.expression_conversions import Converter
sage: a = function('f', x).diff(x); a
D[0](f)(x)
sage: Converter().derivative(a, a.operator())
...
NotImplementedError: derivative
EXAMPLES:
sage: from sage.symbolic.expression_conversions import Converter
sage: c = Converter(use_fake_div=True)
sage: c.get_fake_div(sin(x)/x)
FakeExpression([sin(x), x], <built-in function div>)
sage: c.get_fake_div(-1*sin(x))
FakeExpression([sin(x)], <built-in function neg>)
sage: c.get_fake_div(-x)
FakeExpression([x], <built-in function neg>)
sage: c.get_fake_div((2*x^3+2*x-1)/((x-2)*(x+1)))
FakeExpression([2*x^3 + 2*x - 1, FakeExpression([x - 2, x + 1], <built-in function mul>)], <built-in function div>)
Check if #8056 is fixed, i.e., if numerator is 1.:
sage: c.get_fake_div(1/pi/x)
FakeExpression([1, FakeExpression([pi, x], <built-in function mul>)], <built-in function div>)
The input to this method is the result of calling pyobject() on a symbolic expression.
Note
Note that if a constant such as pi is encountered in the expression tree, its corresponding pyobject which is an instance of sage.symbolic.constants.Pi will be passed into this method. One cannot do arithmetic using such an object.
TESTS:
sage: from sage.symbolic.expression_conversions import Converter
sage: f = SR(1)
sage: Converter().pyobject(f, f.pyobject())
...
NotImplementedError: pyobject
The input to this method is a symbolic expression which corresponds to a relation.
TESTS:
sage: from sage.symbolic.expression_conversions import Converter
sage: import operator
sage: Converter().relation(x==3, operator.eq)
...
NotImplementedError: relation
sage: Converter().relation(x==3, operator.lt)
...
NotImplementedError: relation
The input to this method is a symbolic expression which corresponds to a single variable. For example, this method could be used to return a generator for a polynomial ring.
TESTS:
sage: from sage.symbolic.expression_conversions import Converter
sage: Converter().symbol(x)
...
NotImplementedError: symbol
Bases: object
Pynac represents as . Often, tree-walkers would prefer to see divisions instead of multiplications and negative exponents. To allow for this (since Pynac internally doesn’t have division at all), there is a possibility to pass use_fake_div=True; this will rewrite an Expression into a mixture of Expression and FakeExpression nodes, where the FakeExpression nodes are used to represent divisions. These nodes are intended to act sufficiently like Expression nodes that tree-walkers won’t care about the difference.
EXAMPLES:
sage: from sage.symbolic.expression_conversions import FakeExpression
sage: import operator; x,y = var('x,y')
sage: f = FakeExpression([x, y], operator.div)
sage: f.operands()
[x, y]
EXAMPLES:
sage: from sage.symbolic.expression_conversions import FakeExpression
sage: import operator; x,y = var('x,y')
sage: f = FakeExpression([x, y], operator.div)
sage: f.operator()
<built-in function div>
EXAMPLES:
sage: from sage.symbolic.expression_conversions import FakeExpression
sage: import operator; x,y = var('x,y')
sage: f = FakeExpression([x, y], operator.div)
sage: f.pyobject()
...
TypeError: self must be a numeric expression
Bases: sage.symbolic.expression_conversions.Converter
EXAMPLES:
sage: from sage.ext.fast_callable import ExpressionTreeBuilder
sage: etb = ExpressionTreeBuilder(vars=['x','y'])
sage: var('x,y')
(x, y)
sage: (x+y)._fast_callable_(etb)
add(v_0, v_1)
sage: (-x)._fast_callable_(etb)
neg(v_0)
sage: (x+y+x^2)._fast_callable_(etb)
add(add(ipow(v_0, 2), v_0), v_1)
TESTS:
Check if rational functions with numerator 1 can be converted. #8056:
sage: (1/pi/x)._fast_callable_(etb)
div(1, mul(pi, v_0))
sage: etb = ExpressionTreeBuilder(vars=['x'], domain=RDF)
sage: (x^7)._fast_callable_(etb)
ipow(v_0, 7)
sage: f(x)=1/pi/x; plot(f,2,3)
Given an ExpressionTreeBuilder, return an Expression representing this value.
EXAMPLES:
sage: from sage.ext.fast_callable import ExpressionTreeBuilder
sage: etb = ExpressionTreeBuilder(vars=['x','y'])
sage: x,y = var('x,y')
sage: sin(sqrt(x+y))._fast_callable_(etb)
sin(sqrt(add(v_0, v_1)))
sage: arctan2(x,y)._fast_callable_(etb)
{arctan2}(v_0, v_1)
EXAMPLES:
sage: from sage.ext.fast_callable import ExpressionTreeBuilder
sage: etb = ExpressionTreeBuilder(vars=['x'])
sage: pi._fast_callable_(etb)
pi
sage: etb = ExpressionTreeBuilder(vars=['x'], domain=RDF)
sage: pi._fast_callable_(etb)
3.14159265359
EXAMPLES:
sage: ff = fast_callable(x == 2, vars=['x'])
sage: ff(2)
0
sage: ff(4)
2
sage: ff = fast_callable(x < 2, vars=['x'])
...
NotImplementedError
Given an ExpressionTreeBuilder, return an Expression representing this value.
EXAMPLES:
sage: from sage.ext.fast_callable import ExpressionTreeBuilder
sage: etb = ExpressionTreeBuilder(vars=['x','y'])
sage: x, y, z = var('x,y,z')
sage: x._fast_callable_(etb)
v_0
sage: y._fast_callable_(etb)
v_1
sage: z._fast_callable_(etb)
...
ValueError: Variable 'z' not found
Bases: sage.symbolic.expression_conversions.Converter
EXAMPLES:
sage: x,y = var('x,y')
sage: f = x*x-y
sage: ff = f._fast_float_('x','y')
sage: ff(2,3)
1.0
sage: a = x + 2*y
sage: f = a._fast_float_('x', 'y')
sage: f(1,0)
1.0
sage: f(0,1)
2.0
sage: f = sqrt(x)._fast_float_('x'); f.op_list()
['load 0', 'call sqrt(1)']
sage: f = (1/2*x)._fast_float_('x'); f.op_list()
['load 0', 'push 0.5', 'mul']
EXAMPLES:
sage: f = sqrt(x)._fast_float_('x')
sage: f(2)
1.41421356237309...
sage: y = var('y')
sage: f = sqrt(x+y)._fast_float_('x', 'y')
sage: f(1,1)
1.41421356237309...
sage: f = sqrt(x+2*y)._fast_float_('x', 'y')
sage: f(2,0)
1.41421356237309...
sage: f(0,1)
1.41421356237309...
EXAMPLES:
sage: f = SR(2)._fast_float_()
sage: f(3)
2.0
EXAMPLES:
sage: ff = fast_float(x == 2, 'x')
sage: ff(2)
0.0
sage: ff(4)
2.0
sage: ff = fast_float(x < 2, 'x')
...
NotImplementedError
EXAMPLES:
sage: f = x._fast_float_('x', 'y')
sage: f(1,2)
1.0
sage: f = x._fast_float_('y', 'x')
sage: f(1,2)
2.0
Bases: sage.symbolic.expression_conversions.Converter
EXAMPLES:
sage: import operator
sage: from sage.symbolic.expression_conversions import InterfaceInit
sage: m = InterfaceInit(maxima)
sage: m.arithmetic(x+2, operator.add)
'(x)+(2)'
EXAMPLES:
sage: from sage.symbolic.expression_conversions import InterfaceInit
sage: m = InterfaceInit(maxima)
sage: m.composition(sin(x), sin)
'sin(x)'
sage: m.composition(ceil(x), ceil)
'ceiling(x)'
sage: m = InterfaceInit(mathematica)
sage: m.composition(sin(x), sin)
'Sin[x]'
EXAMPLES:
sage: import operator
sage: from sage.symbolic.expression_conversions import InterfaceInit
sage: m = InterfaceInit(maxima)
sage: a = function('f', x).diff(x); a
D[0](f)(x)
sage: print m.derivative(a, a.operator())
diff('f(x), x, 1)
sage: b = function('f', x).diff(x).diff(x)
sage: print m.derivative(b, b.operator())
diff('f(x), x, 2)
EXAMPLES:
sage: from sage.symbolic.expression_conversions import InterfaceInit
sage: ii = InterfaceInit(gp)
sage: f = 2+I
sage: ii.pyobject(f, f.pyobject())
'I + 2'
sage: ii.pyobject(SR(2), 2)
'2'
sage: ii.pyobject(pi, pi.pyobject())
'Pi'
EXAMPLES:
sage: import operator
sage: from sage.symbolic.expression_conversions import InterfaceInit
sage: m = InterfaceInit(maxima)
sage: m.relation(x==3, operator.eq)
'x = 3'
sage: m.relation(x==3, operator.lt)
'x < 3'
EXAMPLES:
sage: from sage.symbolic.expression_conversions import InterfaceInit
sage: m = InterfaceInit(maxima)
sage: m.symbol(x)
'x'
sage: f(x) = x
sage: m.symbol(f)
'x'
Bases: sage.symbolic.expression_conversions.Converter
EXAMPLES:
sage: import operator
sage: from sage.symbolic.expression_conversions import PolynomialConverter
sage: x, y = var('x, y')
sage: p = PolynomialConverter(x, base_ring=RR)
sage: p.arithmetic(pi+e, operator.add)
5.85987448204884
sage: p.arithmetic(x^2, operator.pow)
x^2
sage: p = PolynomialConverter(x+y, base_ring=RR)
sage: p.arithmetic(x*y+y^2, operator.add)
x*y + y^2
EXAMPLES:
sage: from sage.symbolic.expression_conversions import PolynomialConverter
sage: a = sin(2)
sage: p = PolynomialConverter(a*x, base_ring=RR)
sage: p.composition(a, a.operator())
0.909297426825682
EXAMPLES:
sage: from sage.symbolic.expression_conversions import PolynomialConverter
sage: p = PolynomialConverter(x, base_ring=QQ)
sage: f = SR(2)
sage: p.pyobject(f, f.pyobject())
2
sage: _.parent()
Rational Field
EXAMPLES:
sage: import operator
sage: from sage.symbolic.expression_conversions import PolynomialConverter
sage: x, y = var('x, y')
sage: p = PolynomialConverter(x, base_ring=RR)
sage: p.relation(x==3, operator.eq)
x - 3.00000000000000
sage: p.relation(x==3, operator.lt)
...
ValueError: Unable to represent as a polynomial
sage: p = PolynomialConverter(x - y, base_ring=QQ)
sage: p.relation(x^2 - y^3 + 1 == x^3, operator.eq)
-x^3 - y^3 + x^2 + 1
Returns a variable in the polynomial ring.
EXAMPLES:
sage: from sage.symbolic.expression_conversions import PolynomialConverter
sage: p = PolynomialConverter(x, base_ring=QQ)
sage: p.symbol(x)
x
sage: _.parent()
Univariate Polynomial Ring in x over Rational Field
Bases: sage.symbolic.expression_conversions.Converter
EXAMPLES:
sage: from sage.symbolic.expression_conversions import RingConverter
sage: P.<z> = ZZ[]
sage: R = RingConverter(P, subs_dict={x:z})
sage: a = 2*x^2 + x + 3
sage: R(a)
2*z^2 + z + 3
EXAMPLES:
sage: from sage.symbolic.expression_conversions import RingConverter
sage: R = RingConverter(RIF)
sage: R(cos(2))
-0.4161468365471424?
EXAMPLES:
sage: from sage.symbolic.expression_conversions import RingConverter
sage: R = RingConverter(RIF)
sage: R(SR(5/2))
2.5000000000000000?
All symbols appearing in the expression must appear in subs_dict in order for the conversion to be successful.
EXAMPLES:
sage: from sage.symbolic.expression_conversions import RingConverter
sage: R = RingConverter(RIF, subs_dict={x:2})
sage: R(x+pi)
5.141592653589794?
sage: R = RingConverter(RIF)
sage: R(x+pi)
...
TypeError
Bases: sage.symbolic.expression_conversions.Converter
EXAMPLES:
sage: from sage.symbolic.expression_conversions import SubstituteFunction
sage: foo = function('foo'); bar = function('bar')
sage: s = SubstituteFunction(foo(x), foo, bar)
sage: f = x*foo(x) + pi/foo(x)
sage: s.arithmetic(f, f.operator())
x*bar(x) + pi/bar(x)
EXAMPLES:
sage: from sage.symbolic.expression_conversions import SubstituteFunction
sage: foo = function('foo'); bar = function('bar')
sage: s = SubstituteFunction(foo(x), foo, bar)
sage: f = foo(x)
sage: s.composition(f, f.operator())
bar(x)
sage: f = foo(foo(x))
sage: s.composition(f, f.operator())
bar(bar(x))
sage: f = sin(foo(x))
sage: s.composition(f, f.operator())
sin(bar(x))
sage: f = foo(sin(x))
sage: s.composition(f, f.operator())
bar(sin(x))
EXAMPLES:
sage: from sage.symbolic.expression_conversions import SubstituteFunction
sage: foo = function('foo'); bar = function('bar')
sage: s = SubstituteFunction(foo(x), foo, bar)
sage: f = foo(x).diff(x)
sage: s.derivative(f, f.operator())
D[0](bar)(x)
EXAMPLES:
sage: from sage.symbolic.expression_conversions import SubstituteFunction
sage: foo = function('foo'); bar = function('bar')
sage: s = SubstituteFunction(foo(x), foo, bar)
sage: f = SR(2)
sage: s.pyobject(f, f.pyobject())
2
sage: _.parent()
Symbolic Ring
EXAMPLES:
sage: from sage.symbolic.expression_conversions import SubstituteFunction
sage: foo = function('foo'); bar = function('bar')
sage: s = SubstituteFunction(foo(x), foo, bar)
sage: eq = foo(x) == x
sage: s.relation(eq, eq.operator())
bar(x) == x
EXAMPLES:
sage: from sage.symbolic.expression_conversions import SubstituteFunction
sage: foo = function('foo'); bar = function('bar')
sage: s = SubstituteFunction(foo(x), foo, bar)
sage: s.symbol(x)
x
Bases: sage.symbolic.expression_conversions.Converter
Converts any expression to SymPy.
EXAMPLE:
sage: import sympy
sage: var('x,y')
(x, y)
sage: f = exp(x^2) - arcsin(pi+x)/y
sage: f._sympy_()
-asin(pi + x)/y + exp(x**2)
sage: _._sage_()
-arcsin(pi + x)/y + e^(x^2)
sage: sympy.sympify(x) # indirect doctest
x
EXAMPLES:
sage: from sage.symbolic.expression_conversions import SympyConverter
sage: s = SympyConverter()
sage: f = x + 2
sage: s.arithmetic(f, f.operator())
2 + x
EXAMPLES:
sage: from sage.symbolic.expression_conversions import SympyConverter
sage: s = SympyConverter()
sage: f = sin(2)
sage: s.composition(f, f.operator())
sin(2)
sage: type(_)
sin
sage: f = arcsin(2)
sage: s.composition(f, f.operator())
asin(2)
EXAMPLES:
sage: from sage.symbolic.expression_conversions import SympyConverter
sage: s = SympyConverter()
sage: f = SR(2)
sage: s.pyobject(f, f.pyobject())
2
sage: type(_)
<class 'sympy.core.numbers.Integer'>
EXAMPLES:
sage: from sage.symbolic.expression_conversions import SympyConverter
sage: s = SympyConverter()
sage: s.symbol(x)
x
sage: type(_)
<class 'sympy.core.symbol.Symbol'>
Returns the symbolic expression ex as a element of the algebraic field field.
EXAMPLES:
sage: a = SR(5/6)
sage: AA(a)
5/6
sage: type(AA(a))
<class 'sage.rings.qqbar.AlgebraicReal'>
sage: QQbar(a)
5/6
sage: type(QQbar(a))
<class 'sage.rings.qqbar.AlgebraicNumber'>
sage: QQbar(i)
1*I
sage: AA(golden_ratio)
1.618033988749895?
sage: QQbar(golden_ratio)
1.618033988749895?
sage: QQbar(sin(pi/3))
0.866025403784439?
sage: QQbar(sqrt(2) + sqrt(8))
4.242640687119285?
sage: AA(sqrt(2) ^ 4) == 4
True
sage: AA(-golden_ratio)
-1.618033988749895?
sage: QQbar((2*I)^(1/2))
1 + 1*I
sage: QQbar(e^(pi*I/3))
0.500000000000000? + 0.866025403784439?*I
sage: AA(x*sin(0))
0
sage: QQbar(x*sin(0))
0
Given an ExpressionTreeBuilder etb, return an Expression representing the symbolic expression ex.
EXAMPLES:
sage: from sage.ext.fast_callable import ExpressionTreeBuilder
sage: etb = ExpressionTreeBuilder(vars=['x','y'])
sage: x,y = var('x,y')
sage: f = y+2*x^2
sage: f._fast_callable_(etb)
add(mul(ipow(v_0, 2), 2), v_1)
sage: f = (2*x^3+2*x-1)/((x-2)*(x+1))
sage: f._fast_callable_(etb)
div(add(add(mul(ipow(v_0, 3), 2), mul(v_0, 2)), -1), mul(add(v_0, -2), add(v_0, 1)))
Returns an object which provides fast floating point evaluation of the symbolic expression ex.
See sage.ext.fast_eval for more information.
EXAMPLES:
sage: from sage.symbolic.expression_conversions import fast_float
sage: f = sqrt(x+1)
sage: ff = fast_float(f, 'x')
sage: ff(1.0)
1.4142135623730951
Returns a polynomial from the symbolic expression ex. Either a base ring base_ring or a polynomial ring ring can be specified for the parent of result. If just a base ring is given, then the variables of the base ring will be the variables of the expression ex.
EXAMPLES:
sage: from sage.symbolic.expression_conversions import polynomial
sage: f = x^2 + 2
sage: polynomial(f, base_ring=QQ)
x^2 + 2
sage: _.parent()
Univariate Polynomial Ring in x over Rational Field
sage: polynomial(f, ring=QQ['x,y'])
x^2 + 2
sage: _.parent()
Multivariate Polynomial Ring in x, y over Rational Field
sage: x, y = var('x, y')
sage: polynomial(x + y^2, ring=QQ['x,y'])
y^2 + x
sage: _.parent()
Multivariate Polynomial Ring in x, y over Rational Field
sage: s,t=var('s,t')
sage: expr=t^2-2*s*t+1
sage: expr.polynomial(None,ring=SR['t'])
t^2 - 2*s*t + 1
sage: _.parent()
Univariate Polynomial Ring in t over Symbolic Ring
The polynomials can have arbitrary (constant) coefficients so long as they coerce into the base ring:
sage: polynomial(2^sin(2)*x^2 + exp(3), base_ring=RR)
1.87813065119873*x^2 + 20.0855369231877