EXAMPLES:
sage: K.<a> = GF(9, 'a')
sage: x = polygen(K)
sage: C = HyperellipticCurve(x^7 - x^5 - 2, x^2 + a)
sage: C._points_fast_sqrt()
[(0 : 1 : 0), (2*a : 2*a + 2 : 1), (2*a : 2*a : 1), (a + 1 : a : 1), (a + 1 : a + 1 : 1), (2 : a + 1 : 1), (1 : a + 1 : 1)]
Bases: sage.schemes.hyperelliptic_curves.hyperelliptic_generic.HyperellipticCurve_generic
Charpoly of frobenius, as an element of ZZ[x].
All the points on this hyperelliptic curve.
EXAMPLES:
sage: x = polygen(GF(7))
sage: C = HyperellipticCurve(x^7 - x^2 - 1)
sage: C.points()
[(0 : 1 : 0), (2 : 5 : 1), (2 : 2 : 1), (3 : 0 : 1), (4 : 6 : 1), (4 : 1 : 1), (5 : 0 : 1), (6 : 5 : 1), (6 : 2 : 1)]
sage: x = polygen(GF(121, 'a'))
sage: C = HyperellipticCurve(x^5 + x - 1, x^2 + 2)
sage: len(C.points())
122