Bases: sage.schemes.generic.scheme.AffineScheme
The spectrum of a commutative ring, as a scheme.
Note
Calling Spec(R) twice produces two distinct (but equal) schemes, which is important for gluing to construct more general schemes.
EXAMPLES:
sage: Spec(QQ)
Spectrum of Rational Field
sage: Spec(PolynomialRing(QQ, 'x'))
Spectrum of Univariate Polynomial Ring in x over Rational Field
sage: Spec(PolynomialRing(QQ, 'x', 3))
Spectrum of Multivariate Polynomial Ring in x0, x1, x2 over Rational Field
sage: X = Spec(PolynomialRing(GF(49,'a'), 3, 'x')); X
Spectrum of Multivariate Polynomial Ring in x0, x1, x2 over Finite Field in a of size 7^2
sage: TestSuite(X).run(skip = ["_test_an_element", "_test_elements", "_test_some_elements", "_test_category"]) # see # 7946
sage: A = Spec(ZZ); B = Spec(ZZ)
sage: A is B
False
sage: A == B
True
A TypeError is raised if the input is not a CommutativeRing.
sage: Spec(5)
...
TypeError: R (=5) must be a commutative ring
sage: Spec(FreeAlgebra(QQ,2, 'x'))
...
TypeError: R (=Free Algebra on 2 generators (x0, x1) over Rational Field) must be a commutative ring
EXAMPLES:
sage: X = Spec(ZZ)
sage: X
Spectrum of Integer Ring
sage: X.base_scheme()
Spectrum of Integer Ring
sage: X.base_ring()
Integer Ring
sage: X.dimension()
1
Return the underlying ring of this scheme.
EXAMPLES:
sage: Spec(QQ).coordinate_ring()
Rational Field
sage: Spec(PolynomialRing(QQ, 3, 'x')).coordinate_ring()
Multivariate Polynomial Ring in x0, x1, x2 over Rational Field
Return the absolute dimension of this scheme.
EXAMPLES:
sage: S = Spec(ZZ)
sage: S.dimension_absolute()
1
sage: S.dimension()
1
Return the absolute dimension of this scheme.
EXAMPLES:
sage: S = Spec(ZZ)
sage: S.dimension_absolute()
1
sage: S.dimension()
1
Return the relative dimension of this scheme over its base.
EXAMPLES:
sage: S = Spec(ZZ)
sage: S.dimension_relative()
0
Return True if this scheme is Noetherian.
EXAMPLES:
sage: Spec(ZZ).is_noetherian()
True
EXAMPLES:
sage: from sage.schemes.generic.spec import is_Spec
sage: is_Spec(QQ^3)
False
sage: X = Spec(QQ); X
Spectrum of Rational Field
sage: is_Spec(X)
True