AUTHORS:
EXAMPLES:
sage: x,y,z = ProjectiveSpace(2, GF(5), names='x,y,z').gens()
sage: C = Curve(y^2*z^7 - x^9 - x*z^8)
sage: pts = C.rational_points(); pts
[(0 : 0 : 1), (0 : 1 : 0), (2 : 2 : 1), (2 : 3 : 1), (3 : 1 : 1), (3 : 4 : 1)]
sage: D1 = C.divisor(pts[0])*3
sage: D2 = C.divisor(pts[1])
sage: D3 = 10*C.divisor(pts[5])
sage: D1.parent() is D2.parent()
True
sage: D = D1 - D2 + D3; D
-(x, z) + 3*(x, y) + 10*(x + 2*z, y + z)
sage: D[1][0]
3
sage: D[1][1]
Ideal (x, y) of Multivariate Polynomial Ring in x, y, z over Finite Field of size 5
sage: C.divisor([(3, pts[0]), (-1, pts[1]), (10,pts[5])])
-(x, z) + 3*(x, y) + 10*(x + 2*z, y + z)
Bases: sage.schemes.generic.divisor.Divisor_generic
For any curve , use C.divisor(v) to construct a divisor on . Here can be either
TODO: Divisors shouldn’t be restricted to rational points. The problem is that the divisor group is the formal sum of the group of points on the curve, and there’s no implemented notion of point on that has coordinates in . This is what should be implemented, by adding an appropriate class to schemes/generic/morphism.py.
EXAMPLES:
sage: E = EllipticCurve([0, 0, 1, -1, 0])
sage: P = E(0,0)
sage: 10*P
(161/16 : -2065/64 : 1)
sage: D = E.divisor(P)
sage: D
(x, y)
sage: 10*D
10*(x, y)
sage: E.divisor([P, P])
2*(x, y)
sage: E.divisor([(3,P), (-4,5*P)])
3*(x, y) - 4*(x - 1/4*z, y + 5/8*z)
Return the coefficient of a given point P in this divisor.
EXAMPLES:
sage: x,y = AffineSpace(2, GF(5), names='xy').gens()
sage: C = Curve(y^2 - x^9 - x)
sage: pts = C.rational_points(); pts
[(0, 0), (2, 2), (2, 3), (3, 1), (3, 4)]
sage: D = C.divisor(pts[0])
sage: D.coeff(pts[0])
1
sage: D = C.divisor([(3,pts[0]), (-1,pts[1])]); D
3*(x, y) - (x - 2, y - 2)
sage: D.coeff(pts[0])
3
sage: D.coeff(pts[1])
-1
Return the support of this divisor, which is the set of points that occur in this divisor with nonzero coefficients.
EXAMPLES:
sage: x,y = AffineSpace(2, GF(5), names='xy').gens()
sage: C = Curve(y^2 - x^9 - x)
sage: pts = C.rational_points(); pts
[(0, 0), (2, 2), (2, 3), (3, 1), (3, 4)]
sage: D = C.divisor([(3,pts[0]), (-1, pts[1])]); D
3*(x, y) - (x - 2, y - 2)
sage: D.support()
[(0, 0), (2, 2)]
Bases: sage.structure.formal_sum.FormalSum
Return the scheme that this divisor is on.
EXAMPLES:
sage: A.<x, y> = AffineSpace(2, GF(5))
sage: C = Curve(y^2 - x^9 - x)
sage: pts = C.rational_points(); pts
[(0, 0), (2, 2), (2, 3), (3, 1), (3, 4)]
sage: D = C.divisor(pts[0])*3 - C.divisor(pts[1]); D
3*(x, y) - (x - 2, y - 2)
sage: D.scheme()
Affine Curve over Finite Field of size 5 defined by -x^9 + y^2 - x