This file implements elements of Eisenstein and unramified extensions of and with capped relative precision.
For the parent class see padic_extension_leaves.pyx.
The underlying implementation is through NTL’s ZZ_pX class. Each element contains the following data:
EXAMPLES:
An Eisenstein extension:
sage: R = Zp(5,5)
sage: S.<x> = R[]
sage: f = x^5 + 75*x^3 - 15*x^2 +125*x - 5
sage: W.<w> = R.ext(f); W
Eisenstein Extension of 5-adic Ring with capped relative precision 5 in w defined by (1 + O(5^5))*x^5 + (O(5^6))*x^4 + (3*5^2 + O(5^6))*x^3 + (2*5 + 4*5^2 + 4*5^3 + 4*5^4 + 4*5^5 + O(5^6))*x^2 + (5^3 + O(5^6))*x + (4*5 + 4*5^2 + 4*5^3 + 4*5^4 + 4*5^5 + O(5^6))
sage: z = (1+w)^5; z
1 + w^5 + w^6 + 2*w^7 + 4*w^8 + 3*w^10 + w^12 + 4*w^13 + 4*w^14 + 4*w^15 + 4*w^16 + 4*w^17 + 4*w^20 + w^21 + 4*w^24 + O(w^25)
sage: y = z >> 1; y
w^4 + w^5 + 2*w^6 + 4*w^7 + 3*w^9 + w^11 + 4*w^12 + 4*w^13 + 4*w^14 + 4*w^15 + 4*w^16 + 4*w^19 + w^20 + 4*w^23 + O(w^24)
sage: y.valuation()
4
sage: y.precision_relative()
20
sage: y.precision_absolute()
24
sage: z - (y << 1)
1 + O(w^25)
sage: (1/w)^12+w
w^-12 + w + O(w^13)
sage: (1/w).parent()
Eisenstein Extension of 5-adic Field with capped relative precision 5 in w defined by (1 + O(5^5))*x^5 + (O(5^6))*x^4 + (3*5^2 + O(5^6))*x^3 + (2*5 + 4*5^2 + 4*5^3 + 4*5^4 + 4*5^5 + O(5^6))*x^2 + (5^3 + O(5^6))*x + (4*5 + 4*5^2 + 4*5^3 + 4*5^4 + 4*5^5 + O(5^6))
An unramified extension:
sage: g = x^3 + 3*x + 3
sage: A.<a> = R.ext(g)
sage: z = (1+a)^5; z
(2*a^2 + 4*a) + (3*a^2 + 3*a + 1)*5 + (4*a^2 + 3*a + 4)*5^2 + (4*a^2 + 4*a + 4)*5^3 + (4*a^2 + 4*a + 4)*5^4 + O(5^5)
sage: z - 1 - 5*a - 10*a^2 - 10*a^3 - 5*a^4 - a^5
O(5^5)
sage: y = z >> 1; y
(3*a^2 + 3*a + 1) + (4*a^2 + 3*a + 4)*5 + (4*a^2 + 4*a + 4)*5^2 + (4*a^2 + 4*a + 4)*5^3 + O(5^4)
sage: 1/a
(3*a^2 + 4) + (a^2 + 4)*5 + (3*a^2 + 4)*5^2 + (a^2 + 4)*5^3 + (3*a^2 + 4)*5^4 + O(5^5)
Different printing modes:
sage: R = Zp(5, print_mode='digits'); S.<x> = R[]; f = x^5 + 75*x^3 - 15*x^2 + 125*x -5; W.<w> = R.ext(f)
sage: z = (1+w)^5; repr(z)
'...4110403113210310442221311242000111011201102002023303214332011214403232013144001400444441030421100001'
sage: R = Zp(5, print_mode='bars'); S.<x> = R[]; g = x^3 + 3*x + 3; A.<a> = R.ext(g)
sage: z = (1+a)^5; repr(z)
'...[4, 4, 4]|[4, 4, 4]|[4, 4, 4]|[4, 4, 4]|[4, 4, 4]|[4, 4, 4]|[4, 4, 4]|[4, 4, 4]|[4, 4, 4]|[4, 4, 4]|[4, 4, 4]|[4, 4, 4]|[4, 4, 4]|[4, 4, 4]|[4, 4, 4]|[4, 4, 4]|[4, 4, 4]|[4, 3, 4]|[1, 3, 3]|[0, 4, 2]'
sage: R = Zp(5, print_mode='terse'); S.<x> = R[]; f = x^5 + 75*x^3 - 15*x^2 + 125*x -5; W.<w> = R.ext(f)
sage: z = (1+w)^5; z
6 + 95367431640505*w + 25*w^2 + 95367431640560*w^3 + 5*w^4 + O(w^100)
sage: R = Zp(5, print_mode='val-unit'); S.<x> = R[]; f = x^5 + 75*x^3 - 15*x^2 + 125*x -5; W.<w> = R.ext(f)
sage: y = (1+w)^5 - 1; y
w^5 * (2090041 + 19073486126901*w + 1258902*w^2 + 674*w^3 + 16785*w^4) + O(w^100)
You can get at the underlying ntl unit:
sage: z._ntl_rep()
[6 95367431640505 25 95367431640560 5]
sage: y._ntl_rep()
[2090041 19073486126901 1258902 674 16785]
sage: y._ntl_rep_abs()
([5 95367431640505 25 95367431640560 5], 0)
NOTES:
If you get an error ``internal error: can't grow this
_ntl_gbigint,`` it indicates that moduli are being mixed
inappropriately somewhere. For example, when calling a function
with a ``ZZ_pX_c`` as an argument, it copies. If the modulus is not
set to the modulus of the ``ZZ_pX_c``, you can get errors.
AUTHORS:
Unpickling.
EXAMPLES:
sage: R = Zp(5,5)
sage: S.<x> = R[]
sage: f = x^5 + 75*x^3 - 15*x^2 +125*x - 5
sage: W.<w> = R.ext(f)
sage: y = W(775, 19); y
w^10 + 4*w^12 + 2*w^14 + w^15 + 2*w^16 + 4*w^17 + w^18 + O(w^19)
sage: loads(dumps(y)) #indirect doctest
w^10 + 4*w^12 + 2*w^14 + w^15 + 2*w^16 + 4*w^17 + w^18 + O(w^19)
Bases: sage.rings.padics.padic_ZZ_pX_element.pAdicZZpXElement
Returns whether self is equal to right modulo self.uniformizer()^absprec.
If absprec is None, returns if self is equal to right modulo the lower of their two precisions.
EXAMPLES:
sage: R = Zp(5,5)
sage: S.<x> = R[]
sage: f = x^5 + 75*x^3 - 15*x^2 +125*x - 5
sage: W.<w> = R.ext(f)
sage: a = W(47); b = W(47 + 25)
sage: a.is_equal_to(b)
False
sage: a.is_equal_to(b, 7)
True
Returns whether the valuation of self is at least absprec. If absprec is None, returns if self is indistinguishable from zero.
If self is an inexact zero of valuation less than absprec, raises a PrecisionError.
EXAMPLES:
sage: R = Zp(5,5)
sage: S.<x> = R[]
sage: f = x^5 + 75*x^3 - 15*x^2 +125*x - 5
sage: W.<w> = R.ext(f)
sage: O(w^189).is_zero()
True
sage: W(0).is_zero()
True
sage: a = W(675)
sage: a.is_zero()
False
sage: a.is_zero(7)
True
sage: a.is_zero(21)
False
Returns a pAdicZZpXCRElement congruent to self but with absolute precision at least absprec. If setting absprec that high would violate the precision cap, raises a precision error. If self is an inexact zero and absprec is greater than the maximum allowed valuation, raises an error.
Note that the new digits will not necessarily be zero.
EXAMPLES:
sage: R = Zp(5,5)
sage: S.<x> = R[]
sage: f = x^5 + 75*x^3 - 15*x^2 +125*x - 5
sage: W.<w> = R.ext(f)
sage: a = W(345, 17); a
4*w^5 + 3*w^7 + w^9 + 3*w^10 + 2*w^11 + 4*w^12 + w^13 + 2*w^14 + 2*w^15 + O(w^17)
sage: b = a.lift_to_precision(19); b
4*w^5 + 3*w^7 + w^9 + 3*w^10 + 2*w^11 + 4*w^12 + w^13 + 2*w^14 + 2*w^15 + w^17 + 2*w^18 + O(w^19)
sage: c = a.lift_to_precision(24); c
4*w^5 + 3*w^7 + w^9 + 3*w^10 + 2*w^11 + 4*w^12 + w^13 + 2*w^14 + 2*w^15 + w^17 + 2*w^18 + 4*w^19 + 4*w^20 + 2*w^21 + 4*w^23 + O(w^24)
sage: a._ntl_rep()
[19 35 118 60 121]
sage: b._ntl_rep()
[19 35 118 60 121]
sage: c._ntl_rep()
[19 35 118 60 121]
Returns a list giving a series representation of self.
Note that zeros are truncated from the returned list if self.parent() is a field, so you must use the valuation function to fully reconstruct self.
EXAMPLES:
sage: R = Zp(5,5)
sage: S.<x> = R[]
sage: f = x^5 + 75*x^3 - 15*x^2 +125*x - 5
sage: W.<w> = R.ext(f)
sage: y = W(775, 19); y
w^10 + 4*w^12 + 2*w^14 + w^15 + 2*w^16 + 4*w^17 + w^18 + O(w^19)
sage: (y>>9).list()
[0, 1, 0, 4, 0, 2, 1, 2, 4, 1]
sage: (y>>9).list('smallest')
[0, 1, 0, -1, 0, 2, 1, 2, 0, 1]
sage: w^10 - w^12 + 2*w^14 + w^15 + 2*w^16 + w^18 + O(w^19)
w^10 + 4*w^12 + 2*w^14 + w^15 + 2*w^16 + 4*w^17 + w^18 + O(w^19)
sage: g = x^3 + 3*x + 3
sage: A.<a> = R.ext(g)
sage: y = 75 + 45*a + 1200*a^2; y
4*a*5 + (3*a^2 + a + 3)*5^2 + 4*a^2*5^3 + a^2*5^4 + O(5^6)
sage: y.list()
[[], [0, 4], [3, 1, 3], [0, 0, 4], [0, 0, 1]]
sage: y.list('smallest')
[[], [0, -1], [-2, 2, -2], [1], [0, 0, 2]]
sage: 5*((-2*5 + 25) + (-1 + 2*5)*a + (-2*5 + 2*125)*a^2)
4*a*5 + (3*a^2 + a + 3)*5^2 + 4*a^2*5^3 + a^2*5^4 + O(5^6)
sage: W(0).list()
[]
sage: W(0,4).list()
[0]
sage: A(0,4).list()
[[]]
Compute the -adic logarithm of any unit. (See below for normalization.)
INPUT:
OUTPUT:
Let be the parent of self, be a uniformizer of and be a generator for the group of roots of unity in . The usual power series for log with values in the additive group of only converges for 1-units (units congruent to 1 modulo ). However, there is a unique extension of log to a homomorphism defined on all the units. If is a unit with , then we define . This is the correct extension because the units of split as a product , where is the subgroup of 1-units. The factor is torsion, so must go to 0 under any homomorphism to the torsion free group .
NOTES:
What some other systems do with regard to non-1-units:
In addition, if branch is specified, then the log map will work on non-units.
..math
log(pi^k \cdot u) = k \cdot branch + log(u)
ALGORITHM:
Input: Some unit u.
..math
\log(1-x) = F(x) = -x - 1/2*x^2 - 1/3*x^3 - 1/4*x^4 - 1/5*x^5 - \cdots
to compute the logarithm .
Add on terms until is zero modulo the precision cap, and then determine if there are further terms that contribute to the sum (those where is slightly above the precision cap but divisible by ).
..math
\log(u) = log(u^{q-1})/(q-1) = F(1-u^{q-1})/(q-1).``
EXAMPLES:
First, the Eisenstein case.:
sage: R = ZpCR(5,5)
sage: S.<x> = R[]
sage: f = x^4 + 15*x^2 + 625*x - 5
sage: W.<w> = R.ext(f)
sage: z = 1 + w^2 + 4*w^7; z
1 + w^2 + 4*w^7 + O(w^20)
Log is actually not implemented completely yet in this case!:
sage: z.log() # not tested -- what we wish would happen
4*w^2 + 3*w^4 + w^6 + w^7 + w^8 + 4*w^9 + 3*w^10 + w^12 + w^13 + 3*w^14 + w^15 + 4*w^16 + 4*w^17 + 3*w^18 + 3*w^19 + O(w^20)
sage: z.log() # what does happen
...
NotImplementedError: log is not quite working yet
Check that log is multiplicative:
sage: y = 1 + 3*w^4 + w^5
sage: y.log() + z.log() - (y*z).log() # not tested -- what we wish would happen
O(w^20)
sage: y.log() + z.log() - (y*z).log() # what does happen
...
NotImplementedError: log is not quite working yet
Now an unramified example.:
sage: g = x^3 + 3*x + 3
sage: A.<a> = R.ext(g)
sage: b = 1 + 5*(1 + a^2) + 5^3*(3 + 2*a)
sage: b.log() # not tested -- what should happen
(4*a^2 + 4)*5 + (a^2 + a + 2)*5^2 + (a^2 + 2*a + 4)*5^3 + (a^2 + 2*a + 2)*5^4 + O(5^5)
sage: b.log() # what does happen
...
NotImplementedError: log is not quite working yet
Check that log is multiplicative:
sage: c = 3 + 5^2*(2 + 4*a)
sage: b.log() + c.log() - (b*c).log() # not tested -- what should happen
O(5^5)
sage: b.log() + c.log() - (b*c).log() # what *actually* does happen
...
NotImplementedError: log is not quite working yet
AUTHORS:
TODO:
Returns the matrix of right multiplication by the element on the power basis for this extension field. Thus the rows of this matrix give the images of each of the . The entries of the matrices are IntegerMod elements, defined modulo p^(self.absprec() / e).
Raises an error if self has negative valuation.
EXAMPLES:
sage: R = ZpCR(5,5)
sage: S.<x> = R[]
sage: f = x^5 + 75*x^3 - 15*x^2 +125*x - 5
sage: W.<w> = R.ext(f)
sage: a = (3+w)^7
sage: a.matrix_mod_pn()
[2757 333 1068 725 2510]
[ 50 1507 483 318 725]
[ 500 50 3007 2358 318]
[1590 1375 1695 1032 2358]
[2415 590 2370 2970 1032]
Returns the absolute precision of self, ie the power of the uniformizer modulo which this element is defined.
EXAMPLES:
sage: R = Zp(5,5)
sage: S.<x> = R[]
sage: f = x^5 + 75*x^3 - 15*x^2 +125*x - 5
sage: W.<w> = R.ext(f)
sage: a = W(75, 19); a
3*w^10 + 2*w^12 + w^14 + w^16 + w^17 + 3*w^18 + O(w^19)
sage: a.valuation()
10
sage: a.precision_absolute()
19
sage: a.precision_relative()
9
sage: a.unit_part()
3 + 2*w^2 + w^4 + w^6 + w^7 + 3*w^8 + O(w^9)
sage: (a.unit_part() - 3).precision_absolute()
9
Returns the relative precision of self, ie the power of the uniformizer modulo which the unit part of self is defined.
EXAMPLES:
sage: R = Zp(5,5)
sage: S.<x> = R[]
sage: f = x^5 + 75*x^3 - 15*x^2 +125*x - 5
sage: W.<w> = R.ext(f)
sage: a = W(75, 19); a
3*w^10 + 2*w^12 + w^14 + w^16 + w^17 + 3*w^18 + O(w^19)
sage: a.valuation()
10
sage: a.precision_absolute()
19
sage: a.precision_relative()
9
sage: a.unit_part()
3 + 2*w^2 + w^4 + w^6 + w^7 + 3*w^8 + O(w^9)
Returns the unit part of self, ie self / uniformizer^(self.valuation())
EXAMPLES:
sage: R = Zp(5,5)
sage: S.<x> = R[]
sage: f = x^5 + 75*x^3 - 15*x^2 +125*x - 5
sage: W.<w> = R.ext(f)
sage: a = W(75, 19); a
3*w^10 + 2*w^12 + w^14 + w^16 + w^17 + 3*w^18 + O(w^19)
sage: a.valuation()
10
sage: a.precision_absolute()
19
sage: a.precision_relative()
9
sage: a.unit_part()
3 + 2*w^2 + w^4 + w^6 + w^7 + 3*w^8 + O(w^9)