The modular group {\rm SL}_2(\ZZ)

class sage.modular.arithgroup.congroup_sl2z.SL2Z_class

Bases: sage.modular.arithgroup.congroup_gamma0.Gamma0_class

The full modular group {\rm SL}_2(\ZZ), regarded as a congruence subgroup of itself.

is_subgroup(right)

Return True if self is a subgroup of right.

EXAMPLES:

sage: SL2Z.is_subgroup(SL2Z)
True
sage: SL2Z.is_subgroup(Gamma1(1))
True
sage: SL2Z.is_subgroup(Gamma0(6))
False
random_element(bound=100)

Return a random element of {\rm SL}_2(\ZZ) with entries whose absolute value is strictly less than bound (default 100).

(Algorithm: Generate a random pair of integers at most bound. If they are not coprime, throw them away and start again. If they are, find an element of {\rm SL}_2(\ZZ) whose bottom row is that, and left-multiply it by \begin{pmatrix} 1 & w \\ 0 & 1\end{pmatrix} for an integer w randomly chosen from a small enough range that the answer still has entries at most bound.)

It is, unfortunately, not true that all elements of SL2Z with entries < bound appear with equal probability; those with larger bottom rows are favoured, because there are fewer valid possibilities for w.

EXAMPLES:

sage: SL2Z.random_element() # random
sage: SL2Z.random_element(5) # still random
reduce_cusp(c)

Return the unique reduced cusp equivalent to c under the action of self. Always returns Infinity, since there is only one equivalence class of cusps for SL_2(Z).

EXAMPLES:

sage: SL2Z.reduce_cusp(Cusps(-1/4))
Infinity
sage.modular.arithgroup.congroup_sl2z.is_SL2Z(x)

Return True if x is the modular group {\rm SL}_2(\ZZ).

EXAMPLES:

sage: from sage.modular.arithgroup.all import is_SL2Z
sage: is_SL2Z(SL2Z)
True
sage: is_SL2Z(Gamma0(6))
False

Previous topic

Congruence Subgroup \Gamma(N)

Next topic

General Hecke Algebras and Hecke Modules

This Page