AUTHORS:
Create the abelian variety corresponding to the given defining data.
INPUT:
OUTPUT: a modular abelian variety
EXAMPLES:
sage: AbelianVariety(Gamma0(37))
Abelian variety J0(37) of dimension 2
sage: AbelianVariety('37a')
Newform abelian subvariety 37a of dimension 1 of J0(37)
sage: AbelianVariety(Newform('37a'))
Newform abelian subvariety 37a of dimension 1 of J0(37)
sage: AbelianVariety(ModularSymbols(37).cuspidal_submodule())
Abelian variety J0(37) of dimension 2
sage: AbelianVariety((Gamma0(37), Gamma0(11)))
Abelian variety J0(37) x J0(11) of dimension 3
sage: AbelianVariety(37)
Abelian variety J0(37) of dimension 2
sage: AbelianVariety([1,2,3])
...
TypeError: X must be an integer, string, newform, modsym space, congruence subgroup or tuple of congruence subgroups
Return the Jacobian of the modular curve .
EXAMPLES:
sage: J0(389)
Abelian variety J0(389) of dimension 32
The result is cached:
sage: J0(33) is J0(33)
True
Return the Jacobian of the modular curve .
EXAMPLES:
sage: J1(389)
Abelian variety J1(389) of dimension 6112
Return the Jacobian of the modular curve .
EXAMPLES:
sage: JH(389,[2])
Abelian variety JH(389,[2]) of dimension 32