Returns the species of subsets.
EXAMPLES:
sage: S = species.SubsetSpecies()
sage: S.generating_series().coefficients(5)
[1, 2, 2, 4/3, 2/3]
sage: S.isotype_generating_series().coefficients(5)
[1, 2, 3, 4, 5]
Bases: sage.combinat.species.structure.GenericSpeciesStructure
Returns the group of permutations whose action on this subset leave it fixed.
EXAMPLES:
sage: F = species.SubsetSpecies()
sage: a = F.structures([1,2,3,4])[6]; a
{1, 3}
sage: a.automorphism_group()
Permutation Group with generators [(2,4), (1,3)]
sage: [a.transport(g) for g in a.automorphism_group()]
[{1, 3}, {1, 3}, {1, 3}, {1, 3}]
EXAMPLES:
sage: P = species.SubsetSpecies()
sage: S = P.structures(["a", "b", "c"])
sage: [s.canonical_label() for s in S]
[{}, {'a'}, {'a'}, {'a'}, {'a', 'b'}, {'a', 'b'}, {'a', 'b'}, {'a', 'b', 'c'}]
EXAMPLES:
sage: F = species.SubsetSpecies()
sage: a = F.structures(["a", "b", "c"])[5]; a
{'a', 'c'}
sage: a.complement()
{'b'}
EXAMPLES:
sage: P = species.SubsetSpecies()
sage: S = P.structures(["a", "b", "c"])
sage: [s.labels() for s in S]
[[], ['a'], ['b'], ['c'], ['a', 'b'], ['a', 'c'], ['b', 'c'], ['a', 'b', 'c']]
Returns the transport of this subset along the permutation perm.
EXAMPLES:
sage: F = species.SubsetSpecies()
sage: a = F.structures(["a", "b", "c"])[5]; a
{'a', 'c'}
sage: p = PermutationGroupElement((1,2))
sage: a.transport(p)
{'b', 'c'}
sage: p = PermutationGroupElement((1,3))
sage: a.transport(p)
{'a', 'c'}