Composition species

class sage.combinat.species.composition_species.CompositionSpeciesStructure(parent, labels, pi, f, gs)

Bases: sage.combinat.species.structure.GenericSpeciesStructure

change_labels(labels)

EXAMPLES:

sage: p = PermutationGroupElement((2,3))
sage: E = species.SetSpecies(); C = species.CycleSpecies()
sage: L = E(C)
sage: S = L.structures(['a','b','c']).list()
sage: a = S[2]; a
F-structure: {{'a', 'c'}, {'b'}}; G-structures: [('a', 'c'), ('b')]
sage: a.change_labels([1,2,3])
F-structure: {{1, 3}, {2}}; G-structures: [(1, 3), (2)]
transport(perm)

EXAMPLES:

sage: p = PermutationGroupElement((2,3))
sage: E = species.SetSpecies(); C = species.CycleSpecies()
sage: L = E(C)
sage: S = L.structures(['a','b','c']).list()
sage: a = S[2]; a
F-structure: {{'a', 'c'}, {'b'}}; G-structures: [('a', 'c'), ('b')]
sage: a.transport(p)
F-structure: {{'a', 'b'}, {'c'}}; G-structures: [('a', 'c'), ('b')]
class sage.combinat.species.composition_species.CompositionSpecies_class(F, G, min=None, max=None, weight=None)

Bases: sage.combinat.species.species.GenericCombinatorialSpecies

weight_ring()

Returns the weight ring for this species. This is determined by asking Sage’s coercion model what the result is when you multiply (and add) elements of the weight rings for each of the operands.

EXAMPLES:

sage: E = species.SetSpecies(); C = species.CycleSpecies()
sage: L = E(C)
sage: L.weight_ring()
Rational Field

Previous topic

Sum species

Next topic

Functorial composition species

This Page