Bases: sage.combinat.sf.sfa.SymmetricFunctionAlgebra_generic_Element
Expands the symmetric function as a symmetric polynomial in
variables.
EXAMPLES:
sage: HLP = HallLittlewoodP(QQ)
sage: HLQ = HallLittlewoodQ(QQ)
sage: HLQp = HallLittlewoodQp(QQ)
sage: HLP([2]).expand(2)
x0^2 + (-t + 1)*x0*x1 + x1^2
sage: HLQ([2]).expand(2)
(-t + 1)*x0^2 + (t^2 - 2*t + 1)*x0*x1 + (-t + 1)*x1^2
sage: HLQp([2]).expand(2)
x0^2 + x0*x1 + x1^2
Returns standard scalar product between self and s.
This is the default implementation that converts both self and x into Schur functions and performs the scalar product that basis.
EXAMPLES:
sage: HLP = HallLittlewoodP(QQ)
sage: HLQ = HallLittlewoodQ(QQ)
sage: HLQp = HallLittlewoodQp(QQ)
sage: HLP([2]).scalar(HLQp([2]))
1
sage: HLP([2]).scalar(HLQp([1,1]))
0
Returns the standard Hall-Littlewood scalar product of self and x.
EXAMPLES:
sage: HLP = HallLittlewoodP(QQ)
sage: HLQ = HallLittlewoodQ(QQ)
sage: HLQp = HallLittlewoodQp(QQ)
sage: HLP([2]).scalar_hl(HLQ([2]))
1
sage: HLP([2]).scalar_hl(HLQ([1,1]))
0
Returns the algebra of symmetric functions in Hall-Littlewood
basis. This is the same as the
basis in John Stembridge’s SF
examples file.
If is not specified, then the base ring will be obtained by
making the univariate polynomial ring over
with the variable
and taking its fraction field.
EXAMPLES:
sage: HallLittlewoodP(QQ)
Hall-Littlewood polynomials in the P basis over Fraction Field of Univariate Polynomial Ring in t over Rational Field
sage: HallLittlewoodP(QQ, t=-1)
Hall-Littlewood polynomials in the P basis with t=-1 over Rational Field
sage: HLP = HallLittlewoodP(QQ)
sage: s = SFASchur(HLP.base_ring())
sage: s(HLP([2,1]))
(-t^2-t)*s[1, 1, 1] + s[2, 1]
The Hall-Littlewood polynomials in the basis at
are the
Schur functions.
sage: HLP = HallLittlewoodP(QQ,t=0)
sage: s = SFASchur(HLP.base_ring())
sage: s(HLP([2,1])) == s([2,1])
True
The Hall-Littlewood polynomials in the basis at
are the
monomial symmetric functions.
sage: HLP = HallLittlewoodP(QQ,t=1)
sage: m = SFAMonomial(HLP.base_ring())
sage: m(HLP([2,2,1])) == m([2,2,1])
True
We end with some examples of coercions between:
- Hall-Littlewood
basis.
- Hall-Littlewood polynomials in the
basis
- Hall-Littlewood polynomials in the
basis (via the Schurs)
- Classical symmetric functions
EXAMPLES:
sage: HLP = HallLittlewoodP(QQ)
sage: HLQ = HallLittlewoodQ(QQ)
sage: HLQp = HallLittlewoodQp(QQ)
sage: s = SFASchur(HLP.base_ring()); p = SFAPower(HLP.base_ring())
sage: HLP(HLQ([2])) # indirect doctest
(-t+1)*P[2]
sage: HLP(HLQp([2]))
t*P[1, 1] + P[2]
sage: HLP(s([2]))
t*P[1, 1] + P[2]
sage: HLP(p([2]))
(t-1)*P[1, 1] + P[2]
Returns the algebra of symmetric functions in Hall-Littlewood
basis. This is the same as the
basis in John Stembridge’s SF
examples file.
If is not specified, then the base ring will be obtained by
making the univariate polynomial ring over
with the variable
and taking its fraction field.
EXAMPLES:
sage: HallLittlewoodQ(QQ)
Hall-Littlewood polynomials in the Q basis over Fraction Field of Univariate Polynomial Ring in t over Rational Field
sage: HallLittlewoodQ(QQ, t=-1)
Hall-Littlewood polynomials in the Q basis with t=-1 over Rational Field
Returns the algebra of symmetric functions in Hall-Littlewood (Qp)
basis. This is dual to the Hall-Littlewood
basis with respect to
the standard scalar product.
If is not specified, then the base ring will be obtained by
making the univariate polynomial ring over
with the variable
and taking its fraction field.
EXAMPLES:
sage: HallLittlewoodQp(QQ)
Hall-Littlewood polynomials in the Qp basis over Fraction Field of Univariate Polynomial Ring in t over Rational Field
sage: HallLittlewoodQp(QQ, t=-1)
Hall-Littlewood polynomials in the Qp basis with t=-1 over Rational Field
Bases: sage.combinat.sf.sfa.SymmetricFunctionAlgebra_generic
Returns the transitions matrix between self and basis for the homogenous component of degree n.
EXAMPLES:
sage: HLP = HallLittlewoodP(QQ)
sage: s = SFASchur(HLP.base_ring())
sage: HLP.transition_matrix(s, 4)
[ 1 -t 0 t^2 -t^3]
[ 0 1 -t -t t^3 + t^2]
[ 0 0 1 -t t^3]
[ 0 0 0 1 -t^3 - t^2 - t]
[ 0 0 0 0 1]
sage: HLQ = HallLittlewoodQ(QQ)
sage: HLQ.transition_matrix(s,3)
[ -t + 1 t^2 - t -t^3 + t^2]
[ 0 t^2 - 2*t + 1 -t^4 + t^3 + t^2 - t]
[ 0 0 -t^6 + t^5 + t^4 - t^2 - t + 1]
sage: HLQp = HallLittlewoodQp(QQ)
sage: HLQp.transition_matrix(s,3)
[ 1 0 0]
[ t 1 0]
[ t^3 t^2 + t 1]
Bases: sage.combinat.sf.hall_littlewood.HallLittlewood_generic
Bases: sage.combinat.sf.hall_littlewood.HallLittlewood_generic
Bases: sage.combinat.sf.hall_littlewood.HallLittlewood_generic