Returns the combinatorial class of combinations of mset. If k is specified, then it returns the combinatorial class of combinations of mset of size k.
The combinatorial classes correctly handle the cases where mset has duplicate elements.
EXAMPLES:
sage: C = Combinations(range(4)); C
Combinations of [0, 1, 2, 3]
sage: C.list()
[[],
[0],
[1],
[2],
[3],
[0, 1],
[0, 2],
[0, 3],
[1, 2],
[1, 3],
[2, 3],
[0, 1, 2],
[0, 1, 3],
[0, 2, 3],
[1, 2, 3],
[0, 1, 2, 3]]
sage: C.cardinality()
16
sage: C2 = Combinations(range(4),2); C2
Combinations of [0, 1, 2, 3] of length 2
sage: C2.list()
[[0, 1], [0, 2], [0, 3], [1, 2], [1, 3], [2, 3]]
sage: C2.cardinality()
6
sage: Combinations([1,2,2,3]).list()
[[],
[1],
[2],
[3],
[1, 2],
[1, 3],
[2, 2],
[2, 3],
[1, 2, 2],
[1, 2, 3],
[2, 2, 3],
[1, 2, 2, 3]]
Bases: sage.combinat.combinat.CombinatorialClass
TESTS:
sage: Combinations([1,2,3]).cardinality()
8
sage: Combinations(['a','a','b']).cardinality()
6
Bases: sage.combinat.combinat.CombinatorialClass
Returns the size of combinations(mset,k). IMPLEMENTATION: Wraps GAP’s NrCombinations.
EXAMPLES:
sage: mset = [1,1,2,3,4,4,5]
sage: Combinations(mset,2).cardinality()
12
Bases: sage.combinat.combination.Combinations_mset
EXAMPLES:
sage: c = Combinations([1,2,3])
sage: range(c.cardinality()) == map(c.rank, c)
True
EXAMPLES:
sage: c = Combinations([1,2,3])
sage: c.list() == map(c.unrank, range(c.cardinality()))
True
Bases: sage.combinat.combination.Combinations_msetk
EXAMPLES:
sage: Combinations([1,2,3,4,5],3).list()
[[1, 2, 3],
[1, 2, 4],
[1, 2, 5],
[1, 3, 4],
[1, 3, 5],
[1, 4, 5],
[2, 3, 4],
[2, 3, 5],
[2, 4, 5],
[3, 4, 5]]
EXAMPLES:
sage: c = Combinations([1,2,3], 2)
sage: range(c.cardinality()) == map(c.rank, c.list())
True
EXAMPLES:
sage: c = Combinations([1,2,3], 2)
sage: c.list() == map(c.unrank, range(c.cardinality()))
True