Bases: sage.categories.category_types.Category_over_base_ring
The category of Hopf algebras
EXAMPLES:
sage: HopfAlgebras(QQ)
Category of hopf algebras over Rational Field
sage: HopfAlgebras(QQ).super_categories()
[Category of bialgebras over Rational Field]
TESTS:
sage: TestSuite(HopfAlgebras(ZZ)).run()
Bases: sage.categories.category_types.Category_over_base_ring
The category of Hopf algebras constructed as dual of a Hopf algebra
Returns the antipode of self.
EXAMPLES:
sage: A = HopfAlgebrasWithBasis(QQ).example(); A
An example of Hopf algebra with basis: the group algebra of the Dihedral group of order 6 as a permutation group over Rational Field
sage: [a,b] = A.algebra_generators()
sage: a, a.antipode()
(B[(1,2,3)], B[(1,3,2)])
sage: b, b.antipode()
(B[(1,3)], B[(1,3)])
TESTS:
sage: all(x.antipode() * x == A.one() for x in A.basis())
True
Bases: sage.categories.category.Category
The category of Hopf algebra morphisms
Bases: sage.categories.tensor.TensorProductsCategory
The category of Hopf algebras constructed by tensor product of Hopf algebras
EXAMPLES:
sage: HopfAlgebras(QQ).TensorProducts().extra_super_categories()
[Category of hopf algebras over Rational Field]
sage: HopfAlgebras(QQ).TensorProducts().super_categories()
[Category of hopf algebras over Rational Field,
Category of tensor products of algebras over Rational Field,
Category of tensor products of coalgebras over Rational Field]
Returns the dual category
EXAMPLES:
The category of Hopf algebras over any field is self dual:
sage: C = HopfAlgebras(QQ)
sage: C.dual()
Category of hopf algebras over Rational Field
EXAMPLES:
sage: HopfAlgebras(QQ).super_categories()
[Category of bialgebras over Rational Field]