Bases: sage.categories.category.Category
The category of fields commutative fields, i.e. commutative rings where all non-zero elements have multiplicative inverses
EXAMPLES:
sage: K = Fields()
sage: K
Category of fields
sage: Fields().super_categories()
[Category of euclidean domains, Category of unique factorization domains, Category of division rings]
sage: K(IntegerRing())
Rational Field
sage: K(PolynomialRing(GF(3), 'x'))
Fraction Field of Univariate Polynomial Ring in x over
Finite Field of size 3
sage: K(RealField())
Real Field with 53 bits of precision
TESTS:
sage: TestSuite(Fields()).run()
EXAMPLES:
sage: Fields().super_categories()
[Category of euclidean domains, Category of unique factorization domains, Category of division rings]