Bimodules

class sage.categories.bimodules.Bimodules(left_base, right_base, name=None)

Bases: sage.categories.category.Category

The category of (R,S)-bimodules

For R and S rings, a (R,S)-bimodule X is a left R-module and right S-module such that the left and right actions commute: r*(x*s) = (r*x)*s.

EXAMPLES:

sage: Bimodules(QQ, ZZ)
Category of bimodules over Rational Field on the left and Integer Ring on the right
sage: Bimodules(QQ, ZZ).super_categories()
[Category of left modules over Rational Field, Category of right modules over Integer Ring]
class ElementMethods
class Bimodules.ParentMethods
classmethod Bimodules.an_instance()

Returns an instance of this class

EXAMPLES:

sage: Bimodules.an_instance()
Category of bimodules over Rational Field on the left and Real Field with 53 bits of precision on the right
Bimodules.left_base_ring()

Returns the left base ring over which elements of this category are defined.

EXAMPLES:

sage: Bimodules(QQ, ZZ).left_base_ring()
Rational Field
Bimodules.right_base_ring()

Returns the right base ring over which elements of this category are defined.

EXAMPLES:

sage: Bimodules(QQ, ZZ).right_base_ring()
Integer Ring
Bimodules.super_categories(*args, **kwds)

EXAMPLES:

sage: Bimodules(QQ, ZZ).super_categories()
[Category of left modules over Rational Field, Category of right modules over Integer Ring]

Previous topic

BialgebrasWithBasis

Next topic

Classical Crystals

This Page