Free algebra quotients

TESTS:

sage: n = 2
sage: A = FreeAlgebra(QQ,n,'x')
sage: F = A.monoid()
sage: i, j = F.gens()
sage: mons = [ F(1), i, j, i*j ]
sage: r = len(mons)
sage: M = MatrixSpace(QQ,r)
sage: mats = [M([0,1,0,0, -1,0,0,0, 0,0,0,-1, 0,0,1,0]), M([0,0,1,0, 0,0,0,1, -1,0,0,0, 0,-1,0,0]) ]
sage: H2.<i,j> = A.quotient(mons,mats)
sage: H2 == loads(dumps(H2))
True
sage: i == loads(dumps(i))
True
class sage.algebras.free_algebra_quotient.FreeAlgebraQuotient(A, mons, mats, names)

Bases: sage.rings.ring.Algebra, object

dimension()
The rank of the algebra (as a free module).
free_algebra()
The free algebra generating the algebra.
gen(i)
The i-th generator of the algebra.
matrix_action()
module()
The free module of the algebra.
monoid()
The free monoid of generators of the algebra.
monomial_basis()
The free monoid of generators of the algebra as elements of a free monoid.
ngens()
The number of generators of the algebra.
rank()
The rank of the algebra (as a free module).

Previous topic

Free algebra elements

Next topic

Free algebra quotient elements

This Page