Coding in Other Languages

When writing code for Sage, use Python for the basic structure and interface. For speed, efficiency, or convenience, you can implement parts of the code using any of the following languages: Cython, C/C++, Fortran 95, GAP, Common Lisp, Singular, and GP/PARI. You can also use all C/C++ libraries included with Sage [3]. (And if you are okay with your code depending on optional Sage packages, you can use Octave, or even Magma, Mathematica, or Maple.)

The first section of this chapter discusses Cython, which is a compiled language based on Python. Many components of Sage are written in Cython. Later sections discuss the interfaces between Sage and PARI, GAP, and Singular.

Cython

Cython is a compiled version of Python. It is based on Pyrex (http://www.cosc.canterbury.ac.nz/greg.ewing/python/Pyrex/). To a large degree, Cython has changed based on what Sage’s developers needed; Cython has been developed in concert with Sage. However, it is an independent project now, which is used beyond the scope of Sage.

As such, it is a young, but developing language, with young, but developing documentation. See its web page, http://www.cython.org/, for the most up-to-date information.

Python is an interpreted language and has no declared data types for variables. These features make it easy to write and debug, but Python code can sometimes be slow. Cython code can look a lot like Python, but it gets translated into C code (often very efficient C code) and then compiled. Thus it offers a language which is familiar to Python developers, but with the potential for much greater speed.

There are several ways to create and build Cython code in Sage.

  1. In the Sage Notebook, begin any cell with %cython. When you evaluate that cell,

    1. It is saved to a file.
    2. Cython is run on it with all the standard Sage libraries automatically linked if necessary.
    3. The resulting .so file is then loaded into your running instance of Sage.
    4. The functionality defined in that cell is now available for you to use in the notebook. Also, the output cell has a link to the C program that was compiled to create the .so file.
  2. Create an .spyx file and attach or load it from the command line. This is similar to creating a %cython cell in the notebook but works completely from the command line (and not from the notebook).

  3. Create a .pyx file and add it to the Sage library.

    1. First, add a listing for the Cython extension to the variable ext_modules in the file SAGE_ROOT/devel/sage/module_list.py. See the distutils.extension.Extension class for more information on creating a new Cython extension.
    2. Then, if you created a new directory for your .pyx file, add the directory name to the packages list in the file SAGE_ROOT/devel/sage/setup.py. (See also the section on “Creating a new directory” in Coding in Python for Sage.)
    3. Run sage -b to rebuild Sage.

    For example, the file SAGE_ROOT/devel/sage/sage/graphs/chrompoly.pyx has the lines

    Extension('sage.graphs.chrompoly',
              sources = ['sage/graphs/chrompoly.pyx']),
    

    in module_list.py. In addition, sage.graphs is included in the packages list under the Distutils section of setup.py since chrompoly.pyx is contained in the directory sage/graphs.

Special pragmas

If Cython code is either attached or loaded as a .spyx file or loaded from the notebook as a %cython block, the following pragmas are available:

  • clang — may be either c or c++ indicating whether a C or C++ compiler should be used.
  • clib — additional libraries to be linked in, the space separated list is split and passed to distutils.
  • cinclude — additional directories to search for header files. The space separated list is split and passed to distutils.

For example:

#clang C++
#clib givaro
#cinclude /usr/local/include/

Attaching or loading .spyx

The easiest way to try out Cython without having to learn anything about distutils, etc., is to create a file with the extension spyx, which stands for “Sage Pyrex”:

  1. Create a file power2.spyx.

  2. Put the following in it:

    def is2pow(n):
        while n != 0 and n%2 == 0:
            n = n >> 1
        return n == 1
    
  3. Start the Sage command line interpreter and load the spyx file (this will fail if you do not have a C compiler installed).

    sage: load "power2.spyx"
    Compiling power2.spyx...
    sage: is2pow(12)
    False
    

Note that you can change power2.spyx, then load it again and it will be recompiled on the fly. You can also attach power2.spyx so it is reloaded whenever you make changes:

sage: attach "power2.spyx"

Cython is used for its speed. Here is a timed test on a 2.6 GHz Opteron:

sage: %time [n for n in range(10^5) if is2pow(n)]
[1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536]
CPU times: user 0.60 s, sys: 0.00 s, total: 0.60 s
Wall time: 0.60 s

Now, the code in the file power2.spyx is valid Python, and if we copy this to a file powerslow.py and load that, we get the following:

sage: load "powerslow.py"
sage: %time [n for n in range(10^5) if is2pow(n)]
[1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536]
CPU times: user 1.01 s, sys: 0.04 s, total: 1.05 s
Wall time: 1.05 s

By the way, we could gain even a little more speed with the Cython version with a type declaration, by changing def is2pow(n): to def is2pow(unsigned int n):.

Other languages

Since Sage is based on Python, it interfaces with C and C++, as well as other languages. See the Python documentation at http://www.python.org/doc/ for more details. In particular, the section “Extending and Embedding the Python Interpreter”, available at http://docs.python.org/ext/ext.html, describes how to write C or C++ modules for use in Python.

The PARI C library interface

(This chapter was written by Martin Albrecht.)

Here is a step-by-step guide to adding new PARI functions to Sage. We use the Frobenius form of a matrix as an example.

Some heavy lifting for matrices over integers is implemented using the PARI library. To compute the Frobenius form in PARI, the matfrobenius function is used.

There are two ways to interact with the PARI library from Sage. The gp interface uses the gp interpreter. The PARI interface uses direct calls to the PARI C functions—this is the preferred way as it is much faster. Thus this section focuses on using PARI.

We will add a new method to the gen class. This is the abstract representation of all PARI library objects. That means that once we add a method to this class, every PARI object, whether it is a number, polynomial or matrix, will have our new method. So you can do pari(1).matfrobenius(), but since PARI wants to apply matfrobenius to matrices, not numbers, you will receive a PariError in this case.

The gen class is defined in SAGE_ROOT/devel/sage/sage/libs/pari/gen.pyx, and this is where we add the method matfrobenius:

def matfrobenius(self, flag=0):
    """
    matfrobenius(M,{flag}): Return the Frobenius form of the
    square matrix M. If flag is 1, return only the elementary
    divisors. If flag is 2, return a two-components vector [F,B]
    where F is the Frobenius form and B is the basis change
    so that M=B^-1*F*B.
    """
    _sig_on
    return self.new_gen(matfrobenius(self.g, flag))

The _sig_on statement is some magic for catching segfault signals. In this way, it prevents SIGSEGVs from the PARI C library crashing the Sage interpreter. Note that self.new_gen() calls a closing _sig_off macro. These two must always come in pairs, i.e. every _sig_on must be matched by a closing _sig_off. The self.new_gen() call constructs a new Sage-python-gen object from a given pari-C-gen where the pari-C-gen is stored as the Sage-python-gen.g attribute. The matfrobenius call is just a call to the PARI C library function matfrobenius with the appropriate parameters.

The information about which function to call and how to call it can be retrieved from the PARI user’s manual (note: Sage includes the development version of PARI, so check that version of the user’s manual). Looking for matfrobenius you can find: "The library syntax is matfrobenius(M,flag)".

In case you are familiar with gp, please note that the PARI C function may have a name that is different from the corresponding gp function (for example, see mathnf), so always check the manual.

We can also add a frobenius(flag) method to the matrix_integer class where we call the matfrobenius() method on the PARI object associated to the matrix after doing some sanity checking. Then we convert output from PARI to Sage objects:

def frobenius(self,flag=0):
    """
    If flag is 0 (the default value), return the Frobenius
        form of this matrix.
    If flag is 1, return only the elementary divisors.
    If flag is 2, return a two-component vector [F,B]
        where F is the Frobenius form and B is the basis change
        so that M=B^-1*F*B.

    INPUT:
       flag -- 0,1 or 2 as described above

    ALGORITHM: uses pari's matfrobenius()

    EXAMPLE:
       sage: A = MatrixSpace(IntegerRing(), 3)(range(9))
       sage: A.frobenius(0)
       [ 0  0  0]
       [ 1  0 18]
       [ 0  1 12]
       sage: A.frobenius(1)
       [x3 - 12*x2 - 18*x]
       sage: A.frobenius(2)
       ([ 0  0  0]
       [ 1  0 18]
       [ 0  1 12],
       [    -1      2     -1]
       [     0  23/15 -14/15]
       [     0  -2/15   1/15])
    """
    if self.nrows()!=self.ncols():
        raise ArithmeticError, \
        "frobenius matrix of non-square matrix not defined."
    v = self._pari_().matfrobenius(flag)
    if flag==0:
        return self.matrix_space()(v.python())
    elif flag==1:
        r = polynomial_ring.PolynomialRing(self.base_ring())
        #BUG: this should be handled in PolynomialRing not here
        return [eval(str(x).replace("^","**"),{},r.gens_dict())
                for x in v.python_list()]
    elif flag==2:
        F = matrix_space.MatrixSpace(rational_field.RationalField(),
                                     self.nrows())(v[0].python())
        B = matrix_space.MatrixSpace(rational_field.RationalField(),
                                     self.nrows())(v[1].python())
        return F,B

GAP

(The first version of this chapter was written by David Joyner.)

Wrapping a GAP function in Sage is a matter of writing a program in Python that uses the pexpect interface to pipe various commands to GAP and read back the input into Sage. This is sometimes easy, sometimes hard.

For example, suppose we want to make a wrapper for the computation of the Cartan matrix of a simple Lie algebra. The Cartan matrix of G_2 is available in GAP using the commands

gap> L:= SimpleLieAlgebra( "G", 2, Rationals );
<Lie algebra of dimension 14 over Rationals>
gap> R:= RootSystem( L );
<root system of rank 2>
gap> CartanMatrix( R );

(Incidentally, most of the GAP Lie algebra implementation was written by Thomas Breuer, Willem de Graaf and Craig Struble.)

In Sage, one can access these commands by typing

sage: L = gap.SimpleLieAlgebra('"G"', 2, 'Rationals'); L
Algebra( Rationals, [ v.1, v.2, v.3, v.4, v.5, v.6, v.7, v.8, v.9, v.10,
  v.11, v.12, v.13, v.14 ] )
sage: R = L.RootSystem(); R
<root system of rank 2>
sage: R.CartanMatrix()
[ [ 2, -1 ], [ -3, 2 ] ]

Note the '"G"' which is evaluated in GAP as the string "G".

The purpose of this section is to use this example to show how one might write a Python/Sage program whose input is, say, ('G',2) and whose output is the matrix above (but as a Sage Matrix—see the code in the directory SAGE_ROOT/devel/sage/sage/matrix/ and the corresponding parts of the Sage reference manual).

First, the input must be converted into strings consisting of legal GAP commands. Then the GAP output, which is also a string, must be parsed and converted if possible to a corresponding Sage/Python object.

def cartan_matrix(type, rank):
    """
    Return the Cartan matrix of given Chevalley type and rank.

    INPUT:
        type -- a Chevalley letter name, as a string, for
                a family type of simple Lie algebras
        rank -- an integer (legal for that type).

    EXAMPLES:
        sage: cartan_matrix("A",5)
        [ 2 -1  0  0  0]
        [-1  2 -1  0  0]
        [ 0 -1  2 -1  0]
        [ 0  0 -1  2 -1]
        [ 0  0  0 -1  2]
        sage: cartan_matrix("G",2)
        [ 2 -1]
        [-3  2]
    """

    L = gap.SimpleLieAlgebra('"%s"'%type, rank, 'Rationals')
    R = L.RootSystem()
    sM = R.CartanMatrix()
    ans = eval(str(sM))
    MS  = MatrixSpace(QQ, rank)
    return MS(ans)

The output ans is a Python list. The last two lines convert that list to an instance of the Sage class Matrix.

Alternatively, one could replace the first line of the above function with this:

L = gap.new('SimpleLieAlgebra("%s", %s, Rationals);'%(type, rank))

Defining “easy” and “hard” is subjective, but here is one definition. Wrapping a GAP function is “easy” if there is already a corresponding class in Python or Sage for the output data type of the GAP function you are trying to wrap. For example, wrapping any GUAVA (GAP’s error-correcting codes package) function is “easy” since error-correcting codes are vector spaces over finite fields and GUAVA functions return one of the following data types:

  • vectors over finite fields,
  • polynomials over finite fields,
  • matrices over finite fields,
  • permutation groups or their elements,
  • integers.

Sage already has classes for each of these.

A “hard” example is left as an exercise! Here are a few ideas.

  • Write a wrapper for GAP’s FreeLieAlgebra function (or, more generally, all the finitely presented Lie algebra functions in GAP). This would require creating new Python objects.
  • Write a wrapper for GAP’s FreeGroup function (or, more generally, all the finitely presented groups functions in GAP). This would require writing some new Python objects.
  • Write a wrapper for GAP’s character tables. Though this could be done without creating new Python objects, to make the most use of these tables, it probably would be best to have new Python objects for this.

Singular

(The first version of this chapter was written by David Joyner.)

Using Singular functions from Sage is not much different conceptually from using GAP functions from Sage. As with GAP, this can range from easy to hard, depending on how much of the data structure of the output of the Singular function is already present in Sage.

First, some terminology. For us, a curve X over a finite field F is an equation of the form f(x,y) = 0, where f \in F[x,y] is a polynomial. It may or may not be singular. A place of degree d is a Galois orbit of d points in X(E), where E/F is of degree d. For example, a place of degree 1 is also a place of degree 3, but a place of degree 2 is not since no degree 3 extension of F contains a degree 2 extension. Places of degree 1 are also called F-rational points.

As an example of the Sage/Singular interface, we will explain how to wrap Singular’s NSplaces, which computes places on a curve over a finite field. (The command closed_points also does this in some cases.) This is “easy” since no new Python classes are needed in Sage to carry this out.

Here is an example on how to use this command in Singular:

 A Computer Algebra System for Polynomial Computations   /   version 3-0-0
                                                       0<
     by: G.-M. Greuel, G. Pfister, H. Schoenemann        \   May 2005
FB Mathematik der Universitaet, D-67653 Kaiserslautern    \
> LIB "brnoeth.lib";
[...]
> ring s=5,(x,y),lp;
> poly f=y^2-x^9-x;
> list X1=Adj_div(f);
Computing affine singular points ...
Computing all points at infinity ...
Computing affine singular places ...
Computing singular places at infinity ...
Computing non-singular places at infinity ...
Adjunction divisor computed successfully

The genus of the curve is 4
> list X2=NSplaces(1,X1);
Computing non-singular affine places of degree 1 ...
> list X3=extcurve(1,X2);

Total number of rational places : 6

> def R=X3[1][5];
> setring R;
> POINTS;
[1]:
   [1]:
      0
   [2]:
      1
   [3]:
      0
[2]:
   [1]:
      -2
   [2]:
      1
   [3]:
      1
[3]:
   [1]:
      -2
   [2]:
      1
   [3]:
      1
[4]:
   [1]:
      -2
   [2]:
      -1
   [3]:
      1
[5]:
   [1]:
      2
   [2]:
      -2
   [3]:
      1
[6]:
   [1]:
      0
   [2]:
      0
   [3]:
      1

Here is another way of doing this same calculation in the Sage interface to Singular:

sage: singular.LIB("brnoeth.lib")
sage: singular.ring(5,'(x,y)','lp')
    //   characteristic : 5
    //   number of vars : 2
    //        block   1 : ordering lp
    //                  : names    x y
    //        block   2 : ordering C
sage: f = singular('y^2-x^9-x')
sage: print singular.eval("list X1=Adj_div(%s);"%f.name())
Computing affine singular points ...
Computing all points at infinity ...
Computing affine singular places ...
Computing singular places at infinity ...
Computing non-singular places at infinity ...
Adjunction divisor computed successfully
<BLANKLINE>
The genus of the curve is 4
sage: print singular.eval("list X2=NSplaces(1,X1);")
Computing non-singular affine places of degree 1 ...
sage: print singular.eval("list X3=extcurve(1,X2);")
<BLANKLINE>
Total number of rational places : 6
<BLANKLINE>
sage: singular.eval("def R=X3[1][5];")
'def R=X3[1][5];'
sage: singular.eval("setring R;")
'setring R;'
sage: L = singular.eval("POINTS;")
sage: print L
[1]:
   [1]:
      0
   [2]:
      1
   [3]:
      0
[2]:
   [1]:
      0    # 32-bit
      -2   # 64-bit
   [2]:
      0    # 32-bit
      -1   # 64-bit
   [3]:
      1
...

From looking at the output, notice that our wrapper function will need to parse the string represented by L above, so let us write a separate function to do just that. This requires figuring out how to determine where the coordinates of the points are placed in the string L. Python has some very useful string manipulation commands to do just that.

def points_parser(string_points,F):
    """
    This function will parse a string of points
    of X over a finite field F returned by Singular's NSplaces
    command into a Python list of points with entries from F.

    EXAMPLES:
        sage: F = GF(5)
        sage: points_parser(L,F)
        ((0, 1, 0), (3, 4, 1), (0, 0, 1), (2, 3, 1), (3, 1, 1), (2, 2, 1))
    """
    Pts=[]
    n=len(L)
    #print n
    #start block to compute a pt
    L1=L
    while len(L1)>32:
        idx=L1.index("     ")
        pt=[]
        ## start block1 for compute pt
        idx=L1.index("     ")
        idx2=L1[idx:].index("\n")
        L2=L1[idx:idx+idx2]
        #print L2
        pt.append(F(eval(L2)))
        # end block1 to compute pt
        L1=L1[idx+8:] # repeat block 2 more times
        #print len(L1)
        ## start block2 for compute pt
        idx=L1.index("     ")
        idx2=L1[idx:].index("\n")
        L2=L1[idx:idx+idx2]
        pt.append(F(eval(L2)))
        # end block2 to compute pt
        L1=L1[idx+8:] # repeat block 1 more time
        ## start block3 for compute pt
        idx=L1.index("     ")
        if "\n" in L1[idx:]:
            idx2=L1[idx:].index("\n")
        else:
            idx2=len(L1[idx:])
        L2=L1[idx:idx+idx2]
        pt.append(F(eval(L2)))
        #print pt
        # end block3 to compute pt
        #end block to compute a pt
        Pts.append(tuple(pt))  # repeat until no more pts
        L1=L1[idx+8:] # repeat block 2 more times
    return tuple(Pts)

Now it is an easy matter to put these ingredients together into a Sage function which takes as input a triple (f,F,d): a polynomial f in F[x,y] defining X:\  f(x,y)=0 (note that the variables x,y must be used), a finite field F of prime order, and the degree d. The output is the number of places in X of degree d=1 over F. At the moment, there is no “translation” between elements of GF(p^d) in Singular and Sage unless d=1. So, for this reason, we restrict ourselves to points of degree one.

def places_on_curve(f,F):
    """
    INPUT:
        f -- element of F[x,y], defining X: f(x,y)=0
        F -- a finite field of *prime order*

    OUTPUT:
        integer -- the number of places in X of degree d=1 over F

    EXAMPLES:
        sage: F=GF(5)
        sage: R=MPolynomialRing(F,2,names=["x","y"])
        sage: x,y=R.gens()
        sage: f=y^2-x^9-x
        sage: places_on_curve(f,F)
        ((0, 1, 0), (3, 4, 1), (0, 0, 1), (2, 3, 1), (3, 1, 1), (2, 2, 1))
    """
    d = 1
    p = F.characteristic()
    singular.eval('LIB "brnoeth.lib";')
    singular.eval("ring s="+str(p)+",(x,y),lp;")
    singular.eval("poly f="+str(f))
    singular.eval("list X1=Adj_div(f);")
    singular.eval("list X2=NSplaces("+str(d)+",X1);")
    singular.eval("list X3=extcurve("+str(d)+",X2);")
    singular.eval("def R=X3[1][5];")
    singular.eval("setring R;")
    L = singular.eval("POINTS;")
    return points_parser(L,F)

Note that the ordering returned by this Sage function is exactly the same as the ordering in the Singular variable POINTS.

One more example (in addition to the one in the docstring):

sage: F = GF(2)
sage: R = MPolynomialRing(F,2,names = ["x","y"])
sage: x,y = R.gens()
sage: f = x^3*y+y^3+x
sage: places_on_curve(f,F)
((0, 1, 0), (1, 0, 0), (0, 0, 1))

Singular: Another approach

There is also a more Python-like interface to Singular. Using this, the code is much simpler, as illustrated below. First, we demonstrate computing the places on a curve in a particular case.

sage: singular.lib('brnoeth.lib')
sage: R = singular.ring(5, '(x,y)', 'lp')
sage: f = singular.new('y^2 - x^9 - x')
sage: X1 = f.Adj_div()
sage: X2 = singular.NSplaces(1, X1)
sage: X3 = singular.extcurve(1, X2)
sage: R = X3[1][5]
sage: singular.set_ring(R)
sage: L = singular.new('POINTS')
sage: [(L[i][1], L[i][2], L[i][3]) for i in range(1,7)]
[(0, 1, 0), (2, 2, 1), (0, 0, 1), (-2, -1, 1), (-2, 1, 1), (2, -2, 1)]  # 32-bit
[(0, 1, 0), (-2, 1, 1), (-2, -1, 1), (2, 2, 1), (0, 0, 1), (2, -2, 1)]  # 64-bit

Next, we implement the general function (for brevity we omit the docstring, which is the same as above). Note that the point_parser function is not required.

def places_on_curve(f,F):
    p = F.characteristic()
    if F.degree() > 1:
        raise NotImplementedError
    singular.lib('brnoeth.lib')
    R = singular.ring(5, '(x,y)', 'lp')
    f = singular.new('y^2 - x^9 - x')
    X1 = f.Adj_div()
    X2 = singular.NSplaces(1, X1)
    X3 = singular.extcurve(1, X2)
    R = X3[1][5]
    singular.setring(R)
    L = singular.new('POINTS')
    return [(int(L[i][1]), int(L[i][2]), int(L[i][3])) \
             for i in range(1,int(L.size())+1)]

This code is much shorter, nice, and more readable. However, it depends on certain functions, e.g. singular.setring having been implemented in the Sage/Singular interface, whereas the code in the previous section used only the barest minimum of that interface.

Creating a new pseudo-tty interface

You can create Sage pseudo-tty interfaces that allow Sage to work with almost any command line program, and which do not require any modification or extensions to that program. They are also surprisingly fast and flexible (given how they work!), because all I/O is buffered, and because interaction between Sage and the command line program can be non-blocking (asynchronous). A pseudo-tty Sage interface is asynchronous because it derives from the Sage class Expect, which handles the communication between Sage and the external process.

For example, here is part of the file SAGE_ROOT/devel/sage/sage/interfaces/octave.py, which defines an interface between Sage and Octave, an open source program for doing numerical computations, among other things.

import os
from expect import Expect, ExpectElement

class Octave(Expect):
    ...

The first two lines import the library os, which contains operating system routines, and also the class Expect, which is the basic class for interfaces. The third line defines the class Octave; it derives from Expect as well. After this comes a docstring, which we omit here (see the file for details). Next comes:

def __init__(self, maxread=100, script_subdirectory="", logfile=None,
             server=None, server_tmpdir=None):
    Expect.__init__(self,
                    name = 'octave',
                    prompt = '>',
                    command = "octave --no-line-editing --silent",
                    maxread = maxread,
                    server = server,
                    server_tmpdir = server_tmpdir,
                    script_subdirectory = script_subdirectory,
                    restart_on_ctrlc = False,
                    verbose_start = False,
                    logfile = logfile,
                    eval_using_file_cutoff=100)

This uses the class Expect to set up the Octave interface.

def set(self, var, value):
    """
    Set the variable var to the given value.
    """
    cmd = '%s=%s;'%(var,value)
    out = self.eval(cmd)
    if out.find("error") != -1:
        raise TypeError, "Error executing code in Octave\nCODE:\n\t%s\nOctave ERROR:\n\t%s"%(cmd, out)

def get(self, var):
    """
    Get the value of the variable var.
    """
    s = self.eval('%s'%var)
    i = s.find('=')
    return s[i+1:]

def console(self):
    octave_console()

These let users type octave.set('x', 3), after which octave.get('x') returns ' 3'. Running octave.console() dumps the user into an Octave interactive shell.

def solve_linear_system(self, A, b):
    """
    Use octave to compute a solution x to A*x = b, as a list.

    INPUT:
        A -- mxn matrix A with entries in QQ or RR
        b -- m-vector b entries in QQ or RR (resp)

    OUTPUT:
        An list x (if it exists) which solves M*x = b

    EXAMPLES:
        sage: M33 = MatrixSpace(QQ,3,3)
        sage: A   = M33([1,2,3,4,5,6,7,8,0])
        sage: V3  = VectorSpace(QQ,3)
        sage: b   = V3([1,2,3])
        sage: octave.solve_linear_system(A,b)    # requires optional octave
        [-0.33333299999999999, 0.66666700000000001, -3.5236600000000002e-18]

    AUTHOR: David Joyner and William Stein
    """
    m = A.nrows()
    n = A.ncols()
    if m != len(b):
        raise ValueError, "dimensions of A and b must be compatible"
    from sage.matrix.all import MatrixSpace
    from sage.rings.all import QQ
    MS = MatrixSpace(QQ,m,1)
    b  = MS(list(b)) # converted b to a "column vector"
    sA = self.sage2octave_matrix_string(A)
    sb = self.sage2octave_matrix_string(b)
    self.eval("a = " + sA )
    self.eval("b = " + sb )
    soln = octave.eval("c = a \\ b")
    soln = soln.replace("\n\n ","[")
    soln = soln.replace("\n\n","]")
    soln = soln.replace("\n",",")
    sol  = soln[3:]
    return eval(sol)

This code defines the method solve_linear_system, which works as documented.

These are only excerpts from octave.py; check that file for more definitions and examples. Look at other files in the directory SAGE_ROOT/devel/sage/sage/interfaces/ for examples of interfaces to other software packages.

[3]See http://www.sagemath.org/links-components.html for a list