Bases: sage.categories.homset.HomsetWithBase
Bases: sage.rings.homset.RingHomset_generic
Space of ring homomorphism where the domain is a (formal) quotient ring.
EXAMPLES:
sage: R.<x,y> = PolynomialRing(QQ, 2)
sage: S.<a,b> = R.quotient(x^2 + y^2)
sage: phi = S.hom([b,a]); phi
Ring endomorphism of Quotient of Multivariate Polynomial Ring in x, y over Rational Field by the ideal (x^2 + y^2)
Defn: a |--> b
b |--> a
sage: phi(a)
b
sage: phi(b)
a
TESTS:
We test pickling of a homset from a quotient.
sage: R.<x,y> = PolynomialRing(QQ, 2)
sage: S.<a,b> = R.quotient(x^2 + y^2)
sage: H = S.Hom(R)
sage: H == loads(dumps(H))
True
We test pickling of actual homomorphisms in a quotient:
sage: phi = S.hom([b,a])
sage: phi == loads(dumps(phi))
True