Plots an isosurface of a function.
INPUT:
EXAMPLES:
sage: var('x,y,z')
(x, y, z)
A simple sphere:
sage: implicit_plot3d(x^2+y^2+z^2==4, (x, -3, 3), (y, -3,3), (z, -3,3))
A nested set of spheres with a hole cut out:
sage: implicit_plot3d((x^2 + y^2 + z^2), (x, -2, 2), (y, -2, 2), (z, -2, 2), plot_points=60, contour=[1,3,5], \
... region=lambda x,y,z: x<=0.2 or y>=0.2 or z<=0.2).show(viewer='tachyon')
A very pretty example from http://iat.ubalt.edu/summers/math/platsol.htm:
sage: T = RDF(golden_ratio)
sage: p = 2 - (cos(x + T*y) + cos(x - T*y) + cos(y + T*z) + cos(y - T*z) + cos(z - T*x) + cos(z + T*x))
sage: r = 4.77
sage: implicit_plot3d(p, (x, -r, r), (y, -r, r), (z, -r, r), plot_points=40).show(viewer='tachyon')
As I write this (but probably not as you read it), it’s almost Valentine’s day, so let’s try a heart (from http://mathworld.wolfram.com/HeartSurface.html)
sage: p = (x^2+9/4*y^2+z^2-1)^3-x^2*z^3-9/(80)*y^2*z^3
sage: r = 1.5
sage: implicit_plot3d(p, (x, -r,r), (y, -r,r), (z, -r,r), plot_points=80, color='red', smooth=False).show(viewer='tachyon')
The same examples also work with the default Jmol viewer; for example:
sage: T = RDF(golden_ratio)
sage: p = 2 - (cos(x + T*y) + cos(x - T*y) + cos(y + T*z) + cos(y - T*z) + cos(z - T*x) + cos(z + T*x))
sage: r = 4.77
sage: implicit_plot3d(p, (x, -r, r), (y, -r, r), (z, -r, r), plot_points=40).show()
Here we use smooth=True with a Tachyon graph:
sage: implicit_plot3d(x^2 + y^2 + z^2, (x, -2, 2), (y, -2, 2), (z, -2, 2), contour=4, smooth=True)
We explicitly specify a gradient function (in conjunction with smooth=True) and invert the normals:
sage: gx = lambda x, y, z: -(2*x + y^2 + z^2)
sage: gy = lambda x, y, z: -(x^2 + 2*y + z^2)
sage: gz = lambda x, y, z: -(x^2 + y^2 + 2*z)
sage: implicit_plot3d(x^2+y^2+z^2, (x, -2, 2), (y, -2, 2), (z, -2, 2), contour=4, \
... plot_points=40, smooth=True, gradient=(gx, gy, gz)).show(viewer='tachyon')
A graph of two metaballs interacting with each other:
sage: def metaball(x0, y0, z0): return 1 / ((x-x0)^2 + (y-y0)^2 + (z-z0)^2)
sage: implicit_plot3d(metaball(-0.6, 0, 0) + metaball(0.6, 0, 0), (x, -2, 2), (y, -2, 2), (z, -2, 2), plot_points=60, contour=2)
MANY MORE EXAMPLES:
A kind of saddle:
sage: implicit_plot3d(x^3 + y^2 - z^2, (x, -2, 2), (y, -2, 2), (z, -2, 2), plot_points=60, contour=0)
A smooth surface with six radial openings:
sage: implicit_plot3d(-(cos(x) + cos(y) + cos(z)), (x, -4, 4), (y, -4, 4), (z, -4, 4))
A cube composed of eight conjoined blobs:
sage: implicit_plot3d(x^2 + y ^2 + z^2 +cos(4*x)+cos(4*y)+cos(4*z)-0.2, (x, -2, 2), (y, -2, 2), (z, -2, 2))
A variation of the blob cube featuring heterogeneously sized blobs:
sage: implicit_plot3d(x^2 + y ^2 + z^2 +sin(4*x) + sin(4*y) + sin(4*z) -1, (x, -2, 2), (y, -2, 2), (z, -2, 2))
A klein bottle:
sage: implicit_plot3d((x^2+y^2+z^2+2*y-1)*((x^2+y^2+z^2-2*y-1)^2-8*z^2)+16*x*z*(x^2+y^2+z^2-2*y-1), (x, -3, 3), (y, -3.1, 3.1), (z, -4, 4))
A lemniscate:
sage: implicit_plot3d(4*x^2*(x^2+y^2+z^2+z)+y^2*(y^2+z^2-1), (x, -0.5, 0.5), (y, -1, 1), (z, -1, 1))
Drope:
sage: implicit_plot3d(z - 4*x*exp(-x^2-y^2), (x, -2, 2), (y, -2, 2), (z, -1.7, 1.7))
A cube with a circular aperture on each face:
sage: implicit_plot3d(((1/2.3)^2 *(x^2 + y^2 + z^2))^-6 + ( (1/2)^8 * (x^8 + y^8 + z^8) )^6 -1, (x, -2, 2), (y, -2, 2), (z, -2, 2))
A simple hyperbolic surface:
sage: implicit_plot3d(x*x + y - z*z, (x, -1, 1), (y, -1, 1), (z, -1, 1))
A hyperboloid:
sage: implicit_plot3d(x^2 + y^2 - z^2 -0.3, (x, -2, 2), (y, -2, 2), (z, -1.8, 1.8))
Duplin cycloid:
sage: implicit_plot3d((2^2 - 0^2 - (2 + 2.1)^2) * (2^2 - 0^2 - (2 - 2.1)^2)*(x^4+y^4+z^4)+ 2*((2^2 - 0^2 - (2 + 2.1)^2 )*(2^2 - 0^2 - (2 - 2.1)^2)* (x^2 * y^2+x^2 * z^2+y^2 * z^2))+2* 2^2 *((-0^2-2^2+2^2+2.1^2)* (2 *x *2+2* y* 0-2^2)-4*0 *2.1^2 *y)*(x^2+y^2+z^2)+ 4 * 2^4 * (2 *x+0 *y)* (-2^2+0 * y+2 * x)+4* 2^4 * 2.1^2 * y^2+2^8, (x, -2, 2.2), (y, -2, 2), (z, -1.3, 1.3))
Sinus:
sage: implicit_plot3d(sin(pi*((x)^2+(y)^2))/2 +z, (x, -1, 1), (y, -1, 1), (z, -1, 1))
A torus:
sage: implicit_plot3d((sqrt(x*x+y*y)-3)^2 + z*z - 1, (x, -4, 4), (y, -4, 4), (z, -1, 1))
An octahedron:
sage: implicit_plot3d(abs(x)+abs(y)+abs(z) - 1, (x, -1, 1), (y, -1, 1), (z, -1, 1))
A cube:
sage: implicit_plot3d(x^100 + y^100 + z^100 -1, (x, -2, 2), (y, -2, 2), (z, -2, 2))
Toupie:
sage: implicit_plot3d((sqrt(x*x+y*y)-3)^3 + z*z - 1, (x, -4, 4), (y, -4, 4), (z, -6, 6))
A cube with rounded edges:
sage: implicit_plot3d(x^4 + y^4 + z^4 - (x^2 + y^2 + z^2), (x, -2, 2), (y, -2, 2), (z, -2, 2))
Chmutov:
sage: implicit_plot3d(x^4 + y^4 + z^4 - (x^2 + y^2 + z^2-0.3), (x, -1.5, 1.5), (y, -1.5, 1.5), (z, -1.5, 1.5))
Further Chutmov:
sage: implicit_plot3d(2*(x^2*(3-4*x^2)^2+y^2*(3-4*y^2)^2+z^2*(3-4*z^2)^2) -3, (x, -1.3, 1.3), (y, -1.3, 1.3), (z, -1.3, 1.3))
Clebsch:
sage: implicit_plot3d(81*(x^3+y^3+z^3)-189*(x^2*y+x^2*z+y^2*x+y^2*z+z^2*x+z^2*y) +54*x*y*z+126*(x*y+x*z+y*z)-9*(x^2+y^2+z^2)-9*(x+y+z)+1, (x, -1, 1), (y, -1, 1), (z, -1, 1))
Looks like a water droplet:
sage: implicit_plot3d(x^2 +y^2 -(1-z)*z^2, (x, -1.5, 1.5), (y, -1.5, 1.5), (z, -1, 1))
Sphere in a cage:
sage: implicit_plot3d((x^8 + z^30 + y^8 - (x^4 + z^50 + y^4 -0.3))*(x^2 + y^2 + z^2 -0.5), (x, -1.2, 1.2), (y, -1.3, 1.3), (z, -1.5, 1.5))
Ortho circle:
sage: implicit_plot3d(((x^2 + y^2 - 1)^2 + z^2)* ((y^2 + z^2 - 1)^2 + x^2)* ((z^2 + x^2 - 1)^2 + y^2) - 0.075^2 *(1 + 3* (x^2 + y^2 + z^2)), (x, -1.5, 1.5), (y, -1.5, 1.5), (z, -1.5, 1.5))
Cube sphere:
sage: implicit_plot3d(12 - ((1/2.3)^2 *(x^2 + y^2 + z^2))^-6 - ( (1/2)^8 * (x^8 + y^8 + z^8) )^6, (x, -2, 2), (y, -2, 2), (z, -2, 2))
Two cylinders intersect to make a cross:
sage: implicit_plot3d((x^2 + y^2 - 1) * ( x^2 + z^2 - 1) - 1, (x, -3, 3), (y, -3, 3), (z, -3, 3))
Three cylinders intersect in a similar fashion:
sage: implicit_plot3d((x^2 + y^2 - 1) * ( x^2 + z^2 - 1)* ( y^2 + z^2 - 1) - 1, (x, -3, 3), (y, -3, 3), (z, -3, 3))
A sphere-ish object with twelve holes, four on each XYZ plane:
sage: implicit_plot3d(3*(cos(x) + cos(y) + cos(z)) + 4* cos(x) * cos(y) * cos(z), (x, -3, 3), (y, -3, 3), (z, -3, 3))
A gyroid:
sage: implicit_plot3d(cos(x) * sin(y) + cos(y) * sin(z) + cos(z) * sin(x), (x, -4, 4), (y, -4, 4), (z, -4, 4))
Tetrahedra:
sage: implicit_plot3d((x^2 + y^2 + z^2)^2 + 8*x*y*z - 10*(x^2 + y^2 + z^2) + 25, (x, -4, 4), (y, -4, 4), (z, -4, 4))
TESTS:
Test a separate resolution in the X direction; this should look like a regular sphere:
sage: implicit_plot3d(x^2 + y^2 + z^2, (x, -2, 2), (y, -2, 2), (z, -2, 2), plot_points=(10, 40, 40), contour=4)
Test using different plot ranges in the different directions; each of these should generate half of a sphere. Note that we need to use the aspect_ratio keyword to make it look right with the unequal plot ranges:
sage: implicit_plot3d(x^2 + y^2 + z^2, (x, 0, 2), (y, -2, 2), (z, -2, 2), contour=4, aspect_ratio=1)
sage: implicit_plot3d(x^2 + y^2 + z^2, (x, -2, 2), (y, 0, 2), (z, -2, 2), contour=4, aspect_ratio=1)
sage: implicit_plot3d(x^2 + y^2 + z^2, (x, -2, 2), (y, -2, 2), (z, 0, 2), contour=4, aspect_ratio=1)
Extra keyword arguments will be passed to show():
sage: implicit_plot3d(x^2 + y^2 + z^2, (x, -2, 2), (y, -2, 2), (z, -2, 2), contour=4, viewer='tachyon')