Lists of Manin symbols (elements of \mathbb{P}^1(R/N)) over number fields.

Lists of elements of \mathbb{P}^1(R/N) where R is the ring of integers of a number field K and N is an integral ideal.

AUTHORS:

  • Maite Aranes (2009): Initial version

EXAMPLES:

We define a P1NFList:

sage: k.<a> = NumberField(x^3 + 11)
sage: N = k.ideal(5, a^2 - a + 1)
sage: P = P1NFList(N); P
The projective line over the ring of integers modulo the Fractional ideal (5, a^2 - a + 1)

List operations with the P1NFList:

sage: len(P)
26
sage: [p for p in P]
[M-symbol (0: 1) of level Fractional ideal (5, a^2 - a + 1), 
...
M-symbol (1: 2*a^2 + 2*a) of level Fractional ideal (5, a^2 - a + 1)]

The elements of the P1NFList are M-symbols:

sage: type(P[2])
<class 'sage.modular.modsym.p1list_nf.MSymbol'>

Definition of MSymbols:

sage: alpha = MSymbol(N, 3, a^2); alpha
M-symbol (3: a^2) of level Fractional ideal (5, a^2 - a + 1)

Find the index of the class of an M-Symbol (c: d) in the list:

sage: i = P.index(alpha)
sage: P[i].c*alpha.d - P[i].d*alpha.c in N
True

Lift an MSymbol to a matrix in SL(2, R):

sage: alpha = MSymbol(N, a + 2, 3*a^2)
sage: alpha.lift_to_sl2_Ok()
[-a - 1, 15*a^2 - 38*a + 86, a + 2, -a^2 + 9*a - 19]
sage: Ok = k.ring_of_integers()
sage: M = Matrix(Ok, 2, alpha.lift_to_sl2_Ok())
sage: det(M)
1
sage: M[1][1] - alpha.d in N
True

Lift an MSymbol from P1NFList to a matrix in SL(2, R)

sage: P[3]
M-symbol (1: -2*a) of level Fractional ideal (5, a^2 - a + 1)
sage: P.lift_to_sl2_Ok(3)
[0, -1, 1, -2*a]
class sage.modular.modsym.p1list_nf.MSymbol(N, c, d=None, check=True)

Bases: sage.structure.sage_object.SageObject

The constructor for an M-symbol over a number field.

INPUT:

  • N – integral ideal (the modulus or level).
  • c – integral element of the underlying number field or an MSymbol of level N.
  • d – (optional) when present, it must be an integral element such that <c> + <d> + N = R, where R is the corresponding ring of integers.
  • check – bool (default True). If check=False the constructor does not check the condition <c> + <d> + N = R.

OUTPUT:

An M-symbol modulo the given ideal N, i.e. an element of the projective line \mathbb{P}^1(R/N), where R is the ring of integers of the underlying number field.

EXAMPLES:

sage: k.<a> = NumberField(x^3 + 11)
sage: N = k.ideal(a + 1, 2)
sage: MSymbol(N, 3, a^2 + 1)
M-symbol (3: a^2 + 1) of level Fractional ideal (2, a + 1)

We can give a tuple as input:

sage: MSymbol(N, (1, 0))
M-symbol (1: 0) of level Fractional ideal (2, a + 1)

We get an error if <c>, <d> and N are not coprime:

sage: MSymbol(N, 2*a, a - 1)
...
ValueError: (2*a, a - 1) is not an element of P1(R/N).
sage: MSymbol(N, (0, 0))
...
ValueError: (0, 0) is not an element of P1(R/N).

Saving and loading works:

sage: alpha = MSymbol(N, 3, a^2 + 1)
sage: loads(dumps(alpha))==alpha
True
N()

Returns the level or modulus of this MSymbol.

EXAMPLES:

sage: k.<a> = NumberField(x^2 + 23)
sage: N = k.ideal(3, a - 1)
sage: alpha = MSymbol(N, 3, a)
sage: alpha.N()
Fractional ideal (3, -1/2*a + 1/2)
c

Returns the first coefficient of the M-symbol.

EXAMPLES:

sage: k.<a> = NumberField(x^3 + 11)
sage: N = k.ideal(a + 1, 2)
sage: alpha = MSymbol(N, 3, a^2 + 1)
sage: alpha.c # indirect doctest
3
d

Returns the second coefficient of the M-symbol.

EXAMPLES:

sage: k.<a> = NumberField(x^3 + 11)
sage: N = k.ideal(a + 1, 2)
sage: alpha = MSymbol(N, 3, a^2 + 1)
sage: alpha.d # indirect doctest
a^2 + 1
lift_to_sl2_Ok()

Lift the MSymbol to an element of SL(2, Ok), where Ok is the ring of integers of the corresponding number field.

OUTPUT:

A list of integral elements [a, b, c', d'] that are the entries of a 2x2 matrix with determinant 1. The lower two entries are congruent (modulo the level) to the coefficients c, d of the MSymbol self.

EXAMPLES:

sage: k.<a> = NumberField(x^2 + 23)
sage: N = k.ideal(3, a - 1)
sage: alpha = MSymbol(N, 3*a + 1, a)
sage: alpha.lift_to_sl2_Ok()
[0, -1, 1, a]
normalize(with_scalar=False)

Returns a normalized MSymbol (a canonical representative of an element of \mathbb{P}^1(R/N) ) equivalent to self.

INPUT:

  • with_scalar – bool (default False)

OUTPUT:

  • (only if with_scalar=True) a transforming scalar u, such that (u*c', u*d') is congruent to (c: d) (mod N), where (c: d) are the coefficients of self and N is the level.
  • a normalized MSymbol (c’: d’) equivalent to self.

EXAMPLES:

sage: k.<a> = NumberField(x^2 + 23)
sage: N = k.ideal(3, a - 1)
sage: alpha1 = MSymbol(N, 3, a); alpha1
M-symbol (3: a) of level Fractional ideal (3, -1/2*a + 1/2)
sage: alpha1.normalize()
M-symbol (0: 1) of level Fractional ideal (3, -1/2*a + 1/2)
sage: alpha2 = MSymbol(N, 4, a + 1)
sage: alpha2.normalize()
M-symbol (1: -a) of level Fractional ideal (3, -1/2*a + 1/2)

We get the scaling factor by setting with_scalar=True:

sage: alpha1.normalize(with_scalar=True)
(a, M-symbol (0: 1) of level Fractional ideal (3, -1/2*a + 1/2))
sage: r, beta1 = alpha1.normalize(with_scalar=True)
sage: r*beta1.c - alpha1.c in N
True
sage: r*beta1.d - alpha1.d in N
True
sage: r, beta2 = alpha2.normalize(with_scalar=True)
sage: r*beta2.c - alpha2.c in N
True
sage: r*beta2.d - alpha2.d in N
True
tuple()

Returns the MSymbol as a list (c, d).

EXAMPLES:

sage: k.<a> = NumberField(x^2 + 23)
sage: N = k.ideal(3, a - 1)
sage: alpha = MSymbol(N, 3, a); alpha
M-symbol (3: a) of level Fractional ideal (3, -1/2*a + 1/2)
sage: alpha.tuple()
(3, a)
class sage.modular.modsym.p1list_nf.P1NFList(N)

Bases: sage.structure.sage_object.SageObject

The class for \mathbb{P}^1(R/N), the projective line modulo N, where R is the ring of integers of a number field K and N is an integral ideal.

INPUT:

  • N - integral ideal (the modulus or level).

OUTPUT:

A P1NFList object representing \mathbb{P}^1(R/N).

EXAMPLES:

sage: k.<a> = NumberField(x^3 + 11)
sage: N = k.ideal(5, a + 1)
sage: P = P1NFList(N); P
The projective line over the ring of integers modulo the Fractional ideal (5, a + 1)

Saving and loading works.

sage: loads(dumps(P)) == P
True
N()

Returns the level or modulus of this P1NFList.

EXAMPLES:

sage: k.<a> = NumberField(x^2 + 31)
sage: N = k.ideal(5, a + 3)
sage: P = P1NFList(N)
sage: P.N()
Fractional ideal (5, a + 3)
apply_J_epsilon(i, e1, e2=1)

Applies the matrix J_{\epsilon} = [e1, 0, 0, e2] to the i-th M-Symbol of the list.

e1, e2 are units of the underlying number field.

INPUT:

  • i – integer
  • e1 – unit
  • e2 – unit (default 1)

OUTPUT:

integer – the index of the M-Symbol obtained by the right action of the matrix J_{\epsilon} = [e1, 0, 0, e2] on the i-th M-Symbol.

EXAMPLES:

sage: k.<a> = NumberField(x^3 + 11)
sage: N = k.ideal(5, a + 1)
sage: P = P1NFList(N)
sage: u = k.unit_group().gens(); u
[-1, 2*a^2 + 4*a - 1]
sage: P.apply_J_epsilon(4, -1)
2
sage: P.apply_J_epsilon(4, u[0], u[1])
1
sage: k.<a> = NumberField(x^4 + 13*x - 7)
sage: N = k.ideal(a + 1)
sage: P = P1NFList(N)
sage: u = k.unit_group().gens(); u
[-1, a^3 + a^2 + a + 12, a^3 + 3*a^2 - 1]
sage: P.apply_J_epsilon(3, u[2]^2)==P.apply_J_epsilon(P.apply_J_epsilon(3, u[2]),u[2])
True
apply_S(i)

Applies the matrix S = [0, -1, 1, 0] to the i-th M-Symbol of the list.

INPUT:

  • i – integer

OUTPUT:

integer – the index of the M-Symbol obtained by the right action of the matrix S = [0, -1, 1, 0] on the i-th M-Symbol.

EXAMPLES:

sage: k.<a> = NumberField(x^3 + 11)
sage: N = k.ideal(5, a + 1)
sage: P = P1NFList(N)
sage: j = P.apply_S(P.index_of_normalized_pair(1, 0))
sage: P[j]
M-symbol (0: 1) of level Fractional ideal (5, a + 1)

We test that S has order 2:

sage: j = randint(0,len(P)-1)
sage: P.apply_S(P.apply_S(j))==j
True
apply_TS(i)

Applies the matrix TS = [1, -1, 0, 1] to the i-th M-Symbol of the list.

INPUT:

  • i – integer

OUTPUT:

integer – the index of the M-Symbol obtained by the right action of the matrix TS = [1, -1, 0, 1] on the i-th M-Symbol.

EXAMPLES:

sage: k.<a> = NumberField(x^3 + 11)
sage: N = k.ideal(5, a + 1)
sage: P = P1NFList(N)
sage: P.apply_TS(3)
2

We test that TS has order 3:

sage: j = randint(0,len(P)-1)
sage: P.apply_TS(P.apply_TS(P.apply_TS(j)))==j
True
apply_T_alpha(i, alpha=1)

Applies the matrix T_alpha = [1, alpha, 0, 1] to the i-th M-Symbol of the list.

INPUT:

  • i – integer
  • alpha – element of the corresponding ring of integers(default 1)

OUTPUT:

integer – the index of the M-Symbol obtained by the right action of the matrix T_alpha = [1, alpha, 0, 1] on the i-th M-Symbol.

EXAMPLES:

sage: k.<a> = NumberField(x^3 + 11)
sage: N = k.ideal(5, a + 1)
sage: P = P1NFList(N)
sage: P.apply_T_alpha(4, a^ 2 - 2)
3

We test that T_a*T_b = T_(a+b):

sage: P.apply_T_alpha(3, a^2 - 2)==P.apply_T_alpha(P.apply_T_alpha(3,a^2),-2)
True
index(c, d=None, with_scalar=False)

Returns the index of the class of the pair (c, d) in the fixed list of representatives of \mathbb{P}^1(R/N).

INPUT:

  • c – integral element of the corresponding number field, or an MSymbol.
  • d – (optional) when present, it must be an integral element of the number field such that (c, d) defines an M-symbol of level N.
  • with_scalar – bool (default False)

OUTPUT:

  • u - the normalizing scalar (only if with_scalar=True)
  • i - the index of (c, d) in the list.

EXAMPLES:

sage: k.<a> = NumberField(x^2 + 31)
sage: N = k.ideal(5, a + 3)
sage: P = P1NFList(N)
sage: P.index(3,a)
5
sage: P[5]==MSymbol(N, 3, a).normalize()
True

We can give an MSymbol as input:

sage: alpha = MSymbol(N, 3, a)
sage: P.index(alpha)
5

We cannot look for the class of an MSymbol of a different level:

sage: M = k.ideal(a + 1)
sage: beta = MSymbol(M, 0, 1)
sage: P.index(beta)
...
ValueError: The MSymbol is of a different level

If we are interested in the transforming scalar:

sage: alpha = MSymbol(N, 3, a)
sage: P.index(alpha, with_scalar=True)
(-a, 5)
sage: u, i = P.index(alpha, with_scalar=True)
sage: (u*P[i].c - alpha.c in N) and (u*P[i].d - alpha.d in N)
True
index_of_normalized_pair(c, d=None)

Returns the index of the class (c, d) in the fixed list of representatives of \mathbb(P)^1(R/N).

INPUT:

  • c – integral element of the corresponding number field, or a normalized MSymbol.
  • d – (optional) when present, it must be an integral element of the number field such that (c, d) defines a normalized M-symbol of level N.

OUTPUT:

  • i - the index of (c, d) in the list.

EXAMPLES:

sage: k.<a> = NumberField(x^2 + 31)
sage: N = k.ideal(5, a + 3)
sage: P = P1NFList(N)
sage: P.index_of_normalized_pair(1, 0)
3
sage: j = randint(0,len(P)-1)
sage: P.index_of_normalized_pair(P[j])==j
True
lift_to_sl2_Ok(i)

Lift the i-th element of this P1NFList to an element of SL(2, R), where R is the ring of integers of the corresponding number field.

INPUT:

  • i - integer (index of the element to lift)

OUTPUT:

If the i-th element is (c : d), the function returns a list of integral elements [a, b, c', d'] that defines a 2x2 matrix with determinant 1 and such that c=c' (mod N) and d=d' (mod N).

EXAMPLES:

sage: k.<a> = NumberField(x^2 + 23)
sage: N = k.ideal(3)
sage: P = P1NFList(N)
sage: len(P)
16
sage: P[5]
M-symbol (1/2*a + 1/2: -a) of level Fractional ideal (3)
sage: P.lift_to_sl2_Ok(5)
[1, -2, 1/2*a + 1/2, -a]
sage: Ok = k.ring_of_integers()
sage: L = [Matrix(Ok, 2, P.lift_to_sl2_Ok(i)) for i in range(len(P))]
sage: all([det(L[i]) == 1 for i in range(len(L))])
True
list()

Returns the underlying list of this P1NFList object.

EXAMPLES:

sage: k.<a> = NumberField(x^3 + 11)
sage: N = k.ideal(5, a+1)
sage: P = P1NFList(N)
sage: type(P)
<class 'sage.modular.modsym.p1list_nf.P1NFList'>
sage: type(P.list())
<type 'list'>
normalize(c, d=None, with_scalar=False)

Returns a normalised element of \mathbb{P}^1(R/N).

INPUT:

  • c – integral element of the underlying number field, or an MSymbol.
  • d – (optional) when present, it must be an integral element of the number field such that (c, d) defines an M-symbol of level N.
  • with_scalar – bool (default False)

OUTPUT:

  • (only if with_scalar=True) a transforming scalar u, such that (u*c', u*d') is congruent to (c: d) (mod N).
  • a normalized MSymbol (c’: d’) equivalent to (c: d).

EXAMPLES:

sage: k.<a> = NumberField(x^2 + 31)
sage: N = k.ideal(5, a + 3)
sage: P = P1NFList(N)
sage: P.normalize(3, a)
M-symbol (1: 2*a) of level Fractional ideal (5, a + 3)

We can use an MSymbol as input:

sage: alpha = MSymbol(N, 3, a)
sage: P.normalize(alpha)
M-symbol (1: 2*a) of level Fractional ideal (5, a + 3)

If we are interested in the normalizing scalar:

sage: P.normalize(alpha, with_scalar=True)
(-a, M-symbol (1: 2*a) of level Fractional ideal (5, a + 3))
sage: r, beta = P.normalize(alpha, with_scalar=True)
sage: (r*beta.c - alpha.c in N) and (r*beta.d - alpha.d in N)
True
sage.modular.modsym.p1list_nf.P1NFList_clear_level_cache()

Clear the global cache of data for the level ideals.

EXAMPLES:

sage: k.<a> = NumberField(x^3 + 11)
sage: N = k.ideal(a+1)
sage: alpha = MSymbol(N, 2*a^2, 5)
sage: alpha.normalize()
M-symbol (-4*a^2: 5*a^2) of level Fractional ideal (a + 1)
sage: sage.modular.modsym.p1list_nf._level_cache
{Fractional ideal (a + 1): (...)}
sage: sage.modular.modsym.p1list_nf.P1NFList_clear_level_cache()
sage: sage.modular.modsym.p1list_nf._level_cache
{}
sage.modular.modsym.p1list_nf.lift_to_sl2_Ok(N, c, d)

Lift a pair (c, d) to an element of SL(2, O_k), where O_k is the ring of integers of the corresponding number field.

INPUT:

  • N – number field ideal
  • c – integral element of the number field
  • d – integral element of the number field

OUTPUT:

A list [a, b, c’, d’] of integral elements that are the entries of a 2x2 matrix with determinant 1. The lower two entries are congruent to c, d modulo the ideal N.

EXAMPLES:

sage: from sage.modular.modsym.p1list_nf import lift_to_sl2_Ok
sage: k.<a> = NumberField(x^2 + 23)
sage: Ok = k.ring_of_integers(k)
sage: N = k.ideal(3)
sage: M = Matrix(Ok, 2, lift_to_sl2_Ok(N, 1, a))
sage: det(M)
1
sage: M = Matrix(Ok, 2, lift_to_sl2_Ok(N, 0, a))
sage: det(M)
1
sage: (M[1][0] in N) and (M[1][1] - a in N)
True
sage: M = Matrix(Ok, 2, lift_to_sl2_Ok(N, 0, 0))
...
ValueError: Cannot lift (0, 0) to an element of Sl2(Ok).
sage: k.<a> = NumberField(x^3 + 11)
sage: Ok = k.ring_of_integers(k)
sage: N = k.ideal(3, a - 1)
sage: M = Matrix(Ok, 2, lift_to_sl2_Ok(N, 2*a, 0))
sage: det(M)
1
sage: (M[1][0] - 2*a in N) and (M[1][1] in N)
True
sage: M = Matrix(Ok, 2, lift_to_sl2_Ok(N, 4*a^2, a + 1))
sage: det(M)
1
sage: (M[1][0] - 4*a^2 in N) and (M[1][1] - (a+1) in N)
True
sage: k.<a> = NumberField(x^4 - x^3 -21*x^2 + 17*x + 133)
sage: Ok = k.ring_of_integers(k)
sage: N = k.ideal(7, a)
sage: M = Matrix(Ok, 2, lift_to_sl2_Ok(N, 0, a^2 - 1))
sage: det(M)
1
sage: (M[1][0] in N) and (M[1][1] - (a^2-1) in N)
True
sage: M = Matrix(Ok, 2, lift_to_sl2_Ok(N, 0, 7))
...
ValueError: <0> + <7> and the Fractional ideal (7, a) are not coprime.
sage.modular.modsym.p1list_nf.make_coprime(N, c, d)

Returns (c, d’) so d’ is congruent to d modulo N, and such that c and d’ are coprime (<c> + <d’> = R).

INPUT:

  • N – number field ideal
  • c – integral element of the number field
  • d – integral element of the number field

OUTPUT:

A pair (c, d’) where c, d’ are integral elements of the corresponding number field, with d’ congruent to d mod N, and such that <c> + <d’> = R (R being the corresponding ring of integers).

EXAMPLES:

sage: from sage.modular.modsym.p1list_nf import make_coprime
sage: k.<a> = NumberField(x^2 + 23)
sage: N = k.ideal(3, a - 1)
sage: c = 2*a; d = a + 1
sage: N.is_coprime(k.ideal(c, d))
True
sage: k.ideal(c).is_coprime(d)
False
sage: c, dp = make_coprime(N, c, d)
sage: k.ideal(c).is_coprime(dp)
True
sage.modular.modsym.p1list_nf.p1NFlist(N)

Returns a list of the normalized elements of \mathbb{P}^1(R/N), where N is an integral ideal.

INPUT:

  • N - integral ideal (the level or modulus).

EXAMPLES:

sage: k.<a> = NumberField(x^2 + 23)
sage: N = k.ideal(3)
sage: from sage.modular.modsym.p1list_nf import p1NFlist, psi
sage: len(p1NFlist(N))==psi(N)
True
sage.modular.modsym.p1list_nf.psi(N)

The index [\Gamma : \Gamma_0(N)], where \Gamma = GL(2, R) for R the corresponding ring of integers, and \Gamma_0(N) standard congruence subgroup.

EXAMPLES:

sage: from sage.modular.modsym.p1list_nf import psi
sage: k.<a> = NumberField(x^2 + 23)
sage: N = k.ideal(3, a - 1)
sage: psi(N)
4
sage: k.<a> = NumberField(x^2 + 23)
sage: N = k.ideal(5)
sage: psi(N)
26

Previous topic

Relation matrices for ambient modular symbols spaces

Next topic

Modular Forms

This Page