Submodules of spaces of modular forms

EXAMPLES:
sage: M = ModularForms(Gamma1(13),2); M Modular Forms space of dimension 13 for Congruence Subgroup Gamma1(13) of weight 2 over Rational Field sage: M.eisenstein_subspace() Eisenstein subspace of dimension 11 of Modular Forms space of dimension 13 for Congruence Subgroup Gamma1(13) of weight 2 over Rational Field sage: M == loads(dumps(M)) True sage: M.cuspidal_subspace() Cuspidal subspace of dimension 2 of Modular Forms space of dimension 13 for Congruence Subgroup Gamma1(13) of weight 2 over Rational Field
class sage.modular.modform.submodule.ModularFormsSubmodule(ambient_module, submodule, dual=None, check=False)

Bases: sage.modular.modform.space.ModularFormsSpace, sage.modular.hecke.submodule.HeckeSubmodule

A submodule of an ambient space of modular forms.

class sage.modular.modform.submodule.ModularFormsSubmoduleWithBasis(ambient_module, submodule, dual=None, check=False)
Bases: sage.modular.modform.submodule.ModularFormsSubmodule

Previous topic

Modular Forms over a Non-minimal Base Ring

Next topic

The Cuspidal Subspace

This Page