Base class for dense matrices

TESTS:

sage: R.<a,b> = QQ[]
sage: m = matrix(R,2,[0,a,b,b^2])
sage: TestSuite(m).run()
class sage.matrix.matrix_dense.Matrix_dense

Bases: sage.matrix.matrix.Matrix

antitranspose()

Returns the antitranspose of self, without changing self.

EXAMPLES:

sage: A = matrix(2,3,range(6)); A
[0 1 2]
[3 4 5]
sage: A.antitranspose()
[5 2]
[4 1]
[3 0]
sage: A.subdivide(1,2); A
[0 1|2]
[---+-]
[3 4|5]
sage: A.antitranspose()
[5|2]
[-+-]
[4|1]
[3|0]
apply_map(phi, R=None, sparse=False)

Apply the given map phi (an arbitrary Python function or callable object) to this dense matrix. If R is not given, automatically determine the base ring of the resulting matrix.

INPUT:
sparse – True to make the output a sparse matrix; default False
  • phi - arbitrary Python function or callable object
  • R - (optional) ring

OUTPUT: a matrix over R

EXAMPLES:

sage: m = matrix(ZZ, 3, range(9))
sage: k.<a> = GF(9)
sage: f = lambda x: k(x)
sage: n = m.apply_map(f); n
[0 1 2]
[0 1 2]
[0 1 2]
sage: n.parent()
Full MatrixSpace of 3 by 3 dense matrices over Finite Field in a of size 3^2

In this example, we explicitly specify the codomain.

sage: s = GF(3)
sage: f = lambda x: s(x)
sage: n = m.apply_map(f, k); n
[0 1 2]
[0 1 2]
[0 1 2]
sage: n.parent()
Full MatrixSpace of 3 by 3 dense matrices over Finite Field in a of size 3^2

If self is subdivided, the result will be as well:

sage: m = matrix(2, 2, srange(4))
sage: m.subdivide(None, 1); m
[0|1]
[2|3]
sage: m.apply_map(lambda x: x*x)
[0|1]
[4|9]

If the map sends most of the matrix to zero, then it may be useful to get the result as a sparse matrix.

sage: m = matrix(ZZ, 3, 3, range(1, 10))
sage: n = m.apply_map(lambda x: 1//x, sparse=True); n
[1 0 0]
[0 0 0]
[0 0 0]
sage: n.parent()
Full MatrixSpace of 3 by 3 sparse matrices over Integer Ring

TESTS:

sage: m = matrix([])
sage: m.apply_map(lambda x: x*x) == m
True

sage: m.apply_map(lambda x: x*x, sparse=True).parent()
Full MatrixSpace of 0 by 0 sparse matrices over Integer Ring
apply_morphism(phi)

Apply the morphism phi to the coefficients of this dense matrix.

The resulting matrix is over the codomain of phi.

INPUT:

  • phi - a morphism, so phi is callable and phi.domain() and phi.codomain() are defined. The codomain must be a ring.

OUTPUT: a matrix over the codomain of phi

EXAMPLES:

sage: m = matrix(ZZ, 3, range(9))
sage: phi = ZZ.hom(GF(5))
sage: m.apply_morphism(phi)
[0 1 2]
[3 4 0]
[1 2 3]
sage: parent(m.apply_morphism(phi))
Full MatrixSpace of 3 by 3 dense matrices over Finite Field of size 5

We apply a morphism to a matrix over a polynomial ring:

sage: R.<x,y> = QQ[]
sage: m = matrix(2, [x,x^2 + y, 2/3*y^2-x, x]); m
[          x     x^2 + y]
[2/3*y^2 - x           x]
sage: phi = R.hom([y,x])
sage: m.apply_morphism(phi)
[          y     y^2 + x]
[2/3*x^2 - y           y]
transpose()

Returns the transpose of self, without changing self.

EXAMPLES: We create a matrix, compute its transpose, and note that the original matrix is not changed.

sage: M = MatrixSpace(QQ,  2)
sage: A = M([1,2,3,4])
sage: B = A.transpose()
sage: print B
[1 3]
[2 4]
sage: print A
[1 2]
[3 4]
sage: A.subdivide(None, 1); A
[1|2]
[3|4]
sage: A.transpose()
[1 3]
[---]
[2 4]

Previous topic

Minimal Polynomials of Linear Recurrence Sequences

Next topic

Base class for sparse matrices

This Page