These are unitary matrices with entries in .
AUTHORS:
EXAMPLES:
sage: G = SU(3,GF(5))
sage: G.order()
378000
sage: G
Special Unitary Group of degree 3 over Finite Field of size 5
sage: G._gap_init_()
'SU(3, 5)'
sage: G.random_element()
[ 1 4*a + 4 4*a + 1]
[2*a + 4 2*a + 1 0]
[ 4 3*a 4*a + 2]
sage: G.base_ring()
Finite Field of size 5
sage: G.field_of_definition()
Finite Field in a of size 5^2
Return the general unitary group of degree n over the finite field F.
INPUT:
EXAMPLES:
sage: G = GU(3,GF(7)); G
General Unitary Group of degree 3 over Finite Field of size 7
sage: G.gens()
[
[ a 0 0]
[ 0 1 0]
[ 0 0 5*a],
[6*a 6 1]
[ 6 6 0]
[ 1 0 0]
]
sage: G = GU(2,QQ)
...
NotImplementedError: general unitary group only implemented over finite fields
sage: G = GU(3,GF(5), var='beta')
sage: G.gens()
[
[ beta 0 0]
[ 0 1 0]
[ 0 0 3*beta],
[4*beta 4 1]
[ 4 4 0]
[ 1 0 0]
]
Return the special unitary group of degree over .
EXAMPLES:
sage: SU(3,5)
Special Unitary Group of degree 3 over Finite Field of size 5
sage: SU(3,QQ)
...
NotImplementedError: special unitary group only implemented over finite fields
Bases: sage.groups.matrix_gps.matrix_group.MatrixGroup_gap_finite_field
Return the field of definition of this general unity group.
EXAMPLES:
sage: G = GU(3,GF(5))
sage: G.field_of_definition()
Finite Field in a of size 5^2
sage: G.base_field()
Finite Field of size 5