Bases: sage.combinat.sf.classical.SymmetricFunctionAlgebra_classical
Bases: sage.combinat.sf.classical.SymmetricFunctionAlgebra_classical.Element
Expands the symmetric function as a symmetric polynomial in n variables.
EXAMPLES:
sage: s = SFASchur(QQ)
sage: a = s([2,1])
sage: a.expand(2)
x0^2*x1 + x0*x1^2
sage: a.expand(3)
x0^2*x1 + x0*x1^2 + x0^2*x2 + 2*x0*x1*x2 + x1^2*x2 + x0*x2^2 + x1*x2^2
sage: a.expand(4)
x0^2*x1 + x0*x1^2 + x0^2*x2 + 2*x0*x1*x2 + x1^2*x2 + x0*x2^2 + x1*x2^2 + x0^2*x3 + 2*x0*x1*x3 + x1^2*x3 + 2*x0*x2*x3 + 2*x1*x2*x3 + x2^2*x3 + x0*x3^2 + x1*x3^2 + x2*x3^2
sage: a.expand(2, alphabet='y')
y0^2*y1 + y0*y1^2
sage: a.expand(2, alphabet=['a','b'])
a^2*b + a*b^2
sage: s([1,1,1,1]).expand(3)
0
Returns the image of self under the Frobenius / omega automorphism.
EXAMPLES:
sage: s = SFASchur(QQ)
sage: s([2,1]).omega()
s[2, 1]
sage: s([2,1,1]).omega()
s[3, 1]
Returns the standard scalar product between self and x.
Note that the Schur functions are self-dual with respect to this scalar product. They are also lower-triangularly related to the monomial symmetric functions with respect to this scalar product.
EXAMPLES:
sage: s = SFASchur(ZZ)
sage: a = s([2,1])
sage: b = s([1,1,1])
sage: c = 2*s([1,1,1])
sage: d = a + b
sage: a.scalar(a)
1
sage: b.scalar(b)
1
sage: b.scalar(a)
0
sage: b.scalar(c)
2
sage: c.scalar(c)
4
sage: d.scalar(a)
1
sage: d.scalar(b)
1
sage: d.scalar(c)
2
sage: m = SFAMonomial(ZZ)
sage: p4 = Partitions(4)
sage: l = [ [s(p).scalar(m(q)) for q in p4] for p in p4]
sage: matrix(l)
[ 1 0 0 0 0]
[-1 1 0 0 0]
[ 0 -1 1 0 0]
[ 1 -1 -1 1 0]
[-1 2 1 -3 1]
The dual basis to the Schur basis with respect to the standard scalar product is the Schur basis since it is self-dual.
EXAMPLES:
sage: s = SFASchur(QQ)
sage: ds = s.dual_basis()
sage: s is ds
True
EXAMPLES:
sage: s = SFASchur(QQ)
sage: s.is_schur_basis()
True