nn_ndbf

nn_ndbf User's Manual

Edition 1.0

Nov 2009

by Masayuki Noro and Kenta Nishiyama


In this manual we explain about a new b-function package `nn_ndbf.rr' in asir-contrib. To use this package one has to load `nn_ndbf.rr'.

[1518] load("nn_ndbf.rr");

A prefix ndbf. is necessary to call the functions in this package. In this manual we also explain about some related built-in functions.

Computation of b-function

ndbf.bfunction

ndbf.bfunction(f[|weight=w,heruristic=yesno,vord=v]) :: computes the global b-function of a polynomial f
return
a polynomial
f
a polynomial
w
a list [v1,w1,...,vn,wn]
yesno
0 or 1
v
a list of variables
[1519] load("nn_ndbf.rr");
[1602] ndbf.bfunction(x^3-y^2*z^2);
-11664*s^7-93312*s^6-316872*s^5-592272*s^4-658233*s^3-435060*s^2
-158375*s-24500
[1603] F=256*u1^3-128*u3^2*u1^2+(144*u3*u2^2+16*u3^4)*u1-27*u2^4
-4*u3^3*u2^2$
[1604] ndbf.bfunction(F|weight=[u3,2,u2,3,u1,4]);
576*s^6+3456*s^5+8588*s^4+11312*s^3+8329*s^2+3250*s+525

ndbf.bf_local

ndbf.bf_local(f,p[|weight=w,heruristic=yesno,vord=v,op=yesno]) :: computes the local b-function of a polynomial f at p.
return
a list
f
a polynomail
p
a list [v1,a1,...,vn,an]
w
a list [v1,w1,...,vn,wn]
yesno
0 or 1
v
a list of variables
[1527] load("nn_ndbf.rr");
[1610] ndbf.bf_local(y*((x+1)*x^3-y^2),[x,-1,y,0]);
[[-s-1,2]]
[1611] ndbf.bf_local(y*((x+1)*x^3-y^2),[x,-1,y,0]|op=1);
[[[-s-1,2]],12*x^3+36*y^2*x-36*y^2,(32*y*x^2+56*y*x)*dx^2
+((-8*x^3-2*x^2+(128*y^2-6)*x+112*y^2)*dy+288*y*x+(-240*s-128)*y)*dx
+(32*y*x^2-6*y*x+128*y^3-9*y)*dy^2+(32*x^2+6*s*x+640*y^2+39*s+30)*dy
+(-1152*s^2-3840*s-2688)*y]

ndbf.bf_strat

ndbf.bf_strat(f[|weight=w,heruristic=h,vord=v])
:: computes a stratification associated with local b-function of a polynomial f.
return
a list
f
a polynomial
w
a list [v1,w1,...,vn,wn]
h
0 or 1
v
li ist of variables
[1537] load("nn_ndbf.rr");
[1620] F=256*u1^3-128*u3^2*u1^2+(144*u3*u2^2+16*u3^4)*u1-27*u2^4
-4*u3^3*u2^2$
[1621] ndbf.bf_strat(F);
[[u3^2,-u1,-u2],[-1],[[-s-1,2],[16*s^2+32*s+15,1],[36*s^2+72*s+35,1]]]
[[-4*u1+u3^2,-u2],[96*u1^2+40*u3^2*u1-9*u3*u2^2,...],[[-s-1,2]]]
[[...],[-u3*u2,u2*u1,...],[[-s-1,1],...]]]
[[-256*u1^3+128*u3^2*u1^2+...],[...],[[-s-1,1]]]
[[],[-256*u1^3+128*u3^2*u1^2+...],[]]

Computation of annihilator ideal

ndbf.ann

ndbf.ann(f[|weight=w]) :: computes the annihilator ideal of f^s for a polynomial f.
return
a list of differential operators
f
a polynomial
w
a list [v0,w1,...,vn,wn]
[1542] load("nn_ndbf.rr");
[1625] ndbf.ann(x*y*z*(x^3-y^2*z^2));
[(-x^4*dy^2+3*z^4*x*dz^2+12*z^3*x*dz+6*z^2*x)*dx+4*z*x^3*dz*dy^2
-z^5*dz^3-6*z^4*dz^2-6*z^3*dz,
(x^4*dy-3*z^3*y*x*dz-6*z^2*y*x)*dx-4*z*x^3*dz*dy+z^4*y*dz^2+3*z^3*y*dz,
(-x^4+3*z^2*y^2*x)*dx+(4*z*x^3-z^3*y^2)*dz,2*x*dx+3*z*dz-11*s,
-y*dy+z*dz]

Index

Jump to: n

n

  • ndbf.ann
  • ndbf.bf_local
  • ndbf.bf_strat
  • ndbf.bfunction
  • Jump to:

    @vfill @eject


    This document was generated on 13 February 2010 using texi2html 1.56k.