: この文書について...
: One-dimensional Shape Memory Alloy
: Introduction
-
- 1
-
T. Aiki and N. Kenmochi, Some models for shape memory alloys, to appear in
Gakuto, International Series Mathematical Sciences and Applications,
Vol.17(2001), Mathematical Aspects of Modeling Structure Formation
Phenomena.
- 2
-
T. Aiki and N. Kenmochi, Models for shape memory alloys described by
subdifferentials of indicator functions, submited.
- 3
-
H. Brézis, Opérateurs maximaux monotones et semi-groupes de
contractions dans les spaces de Hilbert, North-Holland, Amesterdam, 1973.
- 4
-
M. Brokate and J. Sprekels, Hysteresis and Phase Transitions, Springer,
Appl. Math. Sci., 121, 1996.
- 5
-
F. Falk, Elastic phase transitions and nonconvex energy functions, Free
Boundary Problems: Theory and Applications, I, 45-59, Pitman Research Notes
in Mathematics Series, Vol. 158, Harlow, Longman, 1900.
- 6
-
K.-H. Hoffmann and A. Zochowski, Existence of solutions to some non-linear
thermoelastic systems with viscosity, Math. Mech. Appl. Sci., 15(1992),
187-204.
- 7
-
N. Kenmochi, Solvability of nonlinear evolution equations with
time-dependent constraints and applications, Bull. Fac. Education,
Chiba Univ., 30(1981), 1-87.
- 8
-
N. Kenmochi, T. Koyama and G. H. Meyer, Parabolic PDEs with hysteresis and
quasivariational inequalities, Nonlinear Anal. TMA, 34(1998), 665-686.
- 9
-
M. Niezgodka, Songmu Zheng and J. Sprekels, Global solutions to a model of
structural phase transitions in shape memory alloys, J. Math. Anal. Appl.,
130(1988), 39-54.
- 10
-
I. Pawlow, Three-dimensional model of thermomechanical evolution of shape
memory materials, Control Cybernet., 29(2000), 341-365.
Nobuki Takayama
Heisei 16-1-21.