next up previous
: この文書について... : One-dimensional Shape Memory Alloy : Introduction

Bibliography

1
T. Aiki and N. Kenmochi, Some models for shape memory alloys, to appear in Gakuto, International Series Mathematical Sciences and Applications, Vol.17(2001), Mathematical Aspects of Modeling Structure Formation Phenomena.

2
T. Aiki and N. Kenmochi, Models for shape memory alloys described by subdifferentials of indicator functions, submited.

3
H. Brézis, Opérateurs maximaux monotones et semi-groupes de contractions dans les spaces de Hilbert, North-Holland, Amesterdam, 1973.

4
M. Brokate and J. Sprekels, Hysteresis and Phase Transitions, Springer, Appl. Math. Sci., 121, 1996.

5
F. Falk, Elastic phase transitions and nonconvex energy functions, Free Boundary Problems: Theory and Applications, I, 45-59, Pitman Research Notes in Mathematics Series, Vol. 158, Harlow, Longman, 1900.

6
K.-H. Hoffmann and A. Zochowski, Existence of solutions to some non-linear thermoelastic systems with viscosity, Math. Mech. Appl. Sci., 15(1992), 187-204.

7
N. Kenmochi, Solvability of nonlinear evolution equations with time-dependent constraints and applications, Bull. Fac. Education, Chiba Univ., 30(1981), 1-87.

8
N. Kenmochi, T. Koyama and G. H. Meyer, Parabolic PDEs with hysteresis and quasivariational inequalities, Nonlinear Anal. TMA, 34(1998), 665-686.

9
M. Niezgodka, Songmu Zheng and J. Sprekels, Global solutions to a model of structural phase transitions in shape memory alloys, J. Math. Anal. Appl., 130(1988), 39-54.

10
I. Pawlow, Three-dimensional model of thermomechanical evolution of shape memory materials, Control Cybernet., 29(2000), 341-365.



Nobuki Takayama Heisei 16-1-21.