: この文書について...
: Decay Properties and Asymptotic
: Introduction
- 1
- Biler, P., Local and global solvability of some parabolic systems modelling chemotaxis, Adv. Math. Sci. Appl., 8 (1998) 715-743.
- 2
- Childress, S. and Percus, J. K., Nonlinear aspects of chemotaxis, Math. Biosci., 56 (1981), 217-237.
- 3
- Diaz, J. I., Nagai, T. and Rakotoson, J. M., Symmetrization techniques on unbounded domains: Application to a chemotaxis system on
, J. Differential Equations, 145 (1998), 156-183.
- 4
- Gajewski, H. and Zacharias, K., Global behavior of a reaction-diffusion system modelling chemotaxis, Math. Nachr., 195 (1998), 77-114.
- 5
- Harada, G., Nagai, T., Senba, T. and Suzuki, T., Concentration lemma, Brezis-Merle type inequality, and a parabolic system of chemotaxis, Advances in Differential Equations, 6 (2001), 1255-1280.
- 6
- Henry, D., Geometric Theory of Semilinear Parabolic Equations, Lecture Note in Math., 840, Springer, 1981.
- 7
- Herrero, M. A. and Velázquez, J. J. L., A blow-up mechanism for a chemotactic model, Ann. Scuola Normale Sup. Pisa, XXIV (1997), 633-683.
- 8
- Horstmann, D. and Wang, G., Blow-up in a chemotaxis model without symmetry assumptions, Euro. Jnl of Applied Mathematics, 12(2001), 159-177.
- 9
- Jäger, W. and Luckhaus, S., On explosions of solutions to a system of partial differential equations modelling chemotaxis, Trans.
Amer. Math. Soc., 329 (1992), 819-824.
- 10
- Keller, E. F. and Segel, L. A., Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., 26 (1970),
399-415.
- 11
- Ladyzhenskaya, O. A., Solonnikov, V. A. and Uralt'seva, N. N., Linear and Quasi-linear Equations of Parabolic Type, Nauka, Moscow, 1967: English translation: Amer. Math. Soc., Providence, R. I., 1968.
- 12
- Nagai, T., Behavior of solutions to a parabolic-elliptic system modelling chemotaxis, J. Korean Math. Soc., 37 (2000), 721-733.
- 13
- Nagai, T., Blowup of nonradial solutions to parabolic-elliptic systems modeling chemotaxis in two-dimensional domains, J. of Inequal. & Appl., 6 (2001), 37-55.
- 14
- Nagai, T., Global existence and blowup of solutions to a chemotaxis system, Proceedings of the Second World Congress of Nonlinear Analysis(Athens, 2000), Nonlinear Anal. 47 (2001), 777-787.
- 15
- Nagai, T., Senba, T. and Suzuki, T., Chemotactic collapse in a parabolic system of mathematical biology, Hiroshima Math. J., 30 (2000), 463-497.
- 16
- Nagai, T., Senba, T. and Yoshida, K., Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis, Funkcialaj Ekvacioj, 40(1997), 411-433.
- 17
- Nanjundiah, V., Chemotaxis, signal relaying, and aggregation
morphology, J. Theor. Biol., 42 (1973), 63-105.
- 18
- Senba, T. and Suzuki, T., Chemotactic collapse in a parabolic-elliptic system of mathematical biology, Advances in Differential Equations, 6 (2000), 21-50.
- 19
- Yagi, A., Norm behavior of solutions to the parabolic system of chemotaxis, Math. Japonica, 45 (1997), 241-265.
Nobuki Takayama
Heisei 16-1-21.