: この文書について...
: Asymptotic behavior of a
: Introduction
-
- 1
-
M. Ciarletta, A differential problem for heat equation with a boundary condition with memory,
Applied Mathematical Letters, 10 (1997), 95-101.
- 2
-
M. Fabrizio and A. Morro, A boundary condition with memory in Electromagnetism,
Arch. Rational Mech. Anal., 136 (1996), 359-381.
- 3
-
J. E. Lagnese, Boundary stabilization of thin plates,
SIAM, Studies in Applied Mathematic, vol 10, Philadelphia (1989).
- 4
-
J. E. Muñoz Rivera, E. C. Lapa and R. Barreto, Decay rates for viscoelastic plates with memory,
Journal of Elasticity, 44 (1996), 61-87.
- 5
-
J. E. Muñoz Rivera and D. Andrade, Exponential decay of non-linear wave equation with a viscoelastic boundary condition,
Math. Methods Appl. Sci., 23 (2000), 41-61.
- 6
-
J. E. Muñoz Rivera and D. Andrade, A boundary condition with memory in elasticity,
Appl. Math. Lett., 13 (2000), 115-121.
- 7
-
T. Qin, Global solvability of nonlinear wave equation with a viscoelastic boundary condition,
Chin. Ann. of Math., 14 B (1993), 335-346.
- 8
-
R. Racke, Lectures on nonlinear evolution equations. Initial value problems,
Aspect of Mathematics E19. Friedr. Vieweg & Sohn, Braunschweig/Wiesbaden (1992).
Nobuki Takayama
Heisei 16-1-21.