next up previous
: この文書について... : Commuting differential operators of : Introduction

Bibliography

BB
H. W. Braden and J. G. B. Byatt-Smith, On a functional differential equation of determinantal type, preprint.

BP
V. M. Buchstaber and A. M. Perelomov, On the functional equation related to the quantum three-body problem, Contemporary Mathematical Physics, AMS Transl. Ser. 175(1996), 15-34.

I
V. I. Inozemtsev, Lax representation with spectral parameter on a torus for Integrable particle systems, Lett. Math. Phys. 17(1989), 11-17.

IM
V. I. Inozemtsev and D. V. Meshcheryakov, Extensions of the class of integrable dynamical systems connected with semisimple Lie algebras, Lett. Math. Phys. 9(1985), 13-18.

HO
G. J. Heckman and E. M. Opdam Root system and hypergeometric functions. I, Comp. Math. 64(1987), 329-352.

Oc
H. Ochiai, Commuting differential operators of rank two, Indag. Math. (N.S.) 7(1996), 243-255.

OO
H. Ochiai and T. Oshima, Commuting differential operators with $ B_2$ symmetry, UTMS 94-65, Dept. of Mathematical Sciences, Univ. of Tokyo, 1994, pp.1-31, preprint.

OOS
H. Ochiai, T. Oshima and H. Sekiguchi, Commuting families of symmetric differential operators, Proc. Japan Acad. 70 A(1994), 62-66.

OP1
M. A. Olshanetsky and A. M. Perelomov, Classical integrable finite dimensional systems related to Lie algebras, Phys. Rep. 71(1981), 313-400.

OP2
------, Quantum integrable systems related to Lie algebras, Phys. Rep. 94(1983), 313-404.

O
T. Oshima, Completely integrable systems with a symmetry in coordinates, Asian Math. J. 2(1998), 935-956.

OS
T. Oshima and H. Sekiguchi, Commuting families of differential operators invariant under the action of a Weyl group, J. Math. Sci. Univ. Tokyo 2(1995), 1-75.

OSj
T. Oshima and J. Sekiguchi, Eigenspaces of invariant differential operators on an affine symmetric space, Invent. Math. 57(1980), 1-81.

P
A. M. Perelomov, Integrable Systems of Classical Mechanics and Lie Algebras, 1990, Birkhaüser.

Sj
J. Sekiguchi, Zonal spherical functions on some symmetric spaces, Rubl. RIMS Kyoto Univ. 12 Suppl. (1997), 455-459.

vD
J. F. van Diejen, Integrability of difference Calogero-Moser systems, J. Math. Phys. 35(1994), 2983-3004.

WW
E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, Fourth Edition, 1927, Cambridge University Press.

Funkcialaj Ekvacioj (http://www.math.kobe-u.ac.jp/ $ \tilde{\ }$fe) 46 (2003), 297-336



Nobuki Takayama Heisei 15-9-23.