: この文書について...
: Lower Estimates for the
: Introduction
- 1
-
Boutroux, P.,
Sur quelques propriétés des fonctions entières,
Acta Math., 28 (1904), 97-224.
- 2
-
Gromak, V. I.,
Bäcklund transformations of Painlevé equations and
their applications, The Painlevé property, one century
later (edited by R. Conte), Springer, New York, Berlin, 1999,
687-734.
- 3
-
Gundersen, G. G.,
Estimates for the logarithmic derivative of a
meromorphic function, plus similar estimates,
J. London Math. Soc., 37 (1988), 88-104.
- 4
-
Hayman, W. K.,
Meromorphic functions,
Clarendon Press, Oxford, 1964.
- 5
-
Hinkkanen, A. and Laine, I.,
Solutions of the first and second Painlevé equations are
meromorphic,
J. Anal. Math., 79 (1999), 345-377.
- 6
-
Laine, I.,
Nevanlinna theory and complex differential equations,
de Gruyter, Berlin, New York, 1993.
- 7
-
Mues, E. and Redheffer, R.,
On the growth of the logarithmic derivatives,
J. London Math. Soc., 8 (1974), 412-425.
- 8
-
Murata, Y.,
Rational solutions of the second and the fourth Painlevé
equations,
Funkcial. Ekvac., 28 (1985), 1-32.
- 9
-
Okamoto, K. and Takano, K.,
The proof of the Painlevé property by Masuo Hukuhara,
Funkcial. Ekvac., 44 (2001), 201-217.
- 10
-
Shimomura, S.,
Growth of the first, the second and the fourth
Painlevé transcendents,
Math. Proc. Camb. Phil. Soc., to appear.
- 11
-
Steinmetz, N.,
Value distribution of the Painlevé transcendents,
J. Anal. Math., to appear.
Funkcialaj Ekvacioj (http://www.math.kobe-u.ac.jp/
fe)
46 (2003), 287-295
Nobuki Takayama
Heisei 15-9-23.