: この文書について...
: Rational solutions of the
: Introduction
- 1
- M.Jimbo, T.Miwa, K.Ueno :
Monodromy preserving deformation of linear ordinary differential equations with rational coefficients I,
Physica,2D, 306 - 352 (1981).
- 2
- M.Jimbo, T.Miwa :
Monodromy preserving deformation of linear ordinary differential equations with rational coefficients II,
Physica,2D, 407 - 448 (1981).
- 3
- H.Kawamuko :
Studies on the fourth Painlevé equation in several variables,
Ph. D. dissertation, The University of Tokyo, (1997).
- 4
- H.Kawamuko :
On the holonomic deformation of linear differential equations,
Proc. Japan Acad. Ser. A.,73, 152 - 154 (1997).
- 5
- H.Kawamuko :
On the polynomial Hamiltonian structure associated to the
type,
Proc. Japan Acad. Ser. A.,73, 155 - 157 (1997).
- 6
- H.Kimura :
The degeneration of the two dimensional Garnier system and the polynomial Hamiltonian structure,
Ann.Math.Pura.Appl.,155, 25 - 74 (1989).
- 7
- T.Miwa :
Painlevé property of monodromy preserving deformation equations and the analyticity of
functions,
Publ. RIMS, Kyoto Univ.,17, 703-721 (1981).
- 8
- Y.Murata :
Rational solutions of the second and fourth Painlevé equations,
Funk.Ekva.,28, 1 - 32 (1985).
- 9
- K.Okamoto :
Studies on the Painlevé equations
,
Math.Ann.,275, 221 - 255 (1986).
- 10
- K.Okamoto :
The Hamiltonians associated to the Painlevé equations,
Pysics. The Painlevé Property, ed. R. Conte, CRM Series in Mathematical Pysics (Springer, 1995), pages 735 - 787.
Nobuki Takayama
Heisei 15-5-31.