next up previous
Next: About this document ... Up: On uniqueness and existence Previous: Introduction

Bibliography

QL
Qi, J. and Lu, Y., The slowly decaying solutions of $ \Delta
u+f(u)=0$ in $ \mathbb{R}^{n}$, Funkcialaj Ekvacioj, 41 (1998), 317-326.

SZ
Serrin, J. and Zou, H., Classification of positive solutions of quasilinear elliptic equations, Topological Methods in Nonlinear Analysis, 3 (1994), 1-26.

Pan1
Pan, X., Existence of singular solutions of semi-linear elliptic equations in $ \mathbb{R}^{n}$, Journal of Differential Equations, 94 (1991), 191-203

Pan2
Pan, X., Positive solutions of $ \Delta u+K(x)u^{p}=0$ without decay conditions on $ K(x)$, Proceedings of the American Mathematical Society, 115 (1992), 699-710.

NS
Ni, W.-M. and Serrin, J., Nonexistence theorems for singular solutions of quasilinear differential equations, Communications on Pure and Applied Mathematics, 39 $ \mathbb{\ }$(1986), 379-399

LN
Lin, C.-S. and Ni, W.-M., A counterexample to the nodal domain conjecture and a related semilinear equation, Proceedings of the American Mathematical Society, 102 (1988), 271-277.

BFP
Bamón, R. and Flores, I. and del Pino, M., Ground states of semilinear elliptic equations: a geometric approach, Ann. Inst. Henri Poincaré, Analyse non linéaire, 17 (2000), 551-581.

Ni
Ni, W.-M., On the elliptic equation $ \Delta u+K(x)u^{(n+2)/(n-2)}=0$, its gereralizations, and applications in geometry, Indiana University Mathematical Journal, 31 (1982), 493-529.

Li
Li, Y., Asymptotic behavior of positive solutions of equation $ \Delta u+K(x)u^{p}=0$ in $ \mathbb{R}^{n}$, Journal of Differential Equations, 95 (1992), 304-330.

Masaaki Maniwa, Department of Mathematics, 1-1, Minami-Ohsawa, Hachioji-shi, Tokyo, 192-0397, Japan. E-mail: mmaniwa@comp.metro-u.ac.jp



Nobuki Takayama 2003-01-30