 
 
 
 
 
   
 Next: About this document ...
 Up: Periodic Solutions of Nonlinear
 Previous: Introduction
 
- 
 
- B-C-N
-  
    H. Brezis, J.M. Coron and L. Nirenberg, Free vibrations of 
    a nonlinear wave equation and a theorem of P. Rabinowitz, Comm. Pure 
    Appl. Math. Vol. 33 (1980), 667-684.
  
- BN-Ma
-  
    K. Ben-Naoum and J. Mawhin, The periodic Dirichlet problem 
    for some semilinear wave equations, J. Differential Equations, 
    Vol. 96 (1992), 340-354.
  
- H
- 
    M. R. Herman, Sur la conjugaison différentiable des 
    difféomorphismes du cercle ^ a des rotations, 
    Publ. I.H.E.S., n 49 (1979), 5-233.
  
- Kh
-  
   A. Ya. Khinchin, Continued Fractions, 
    The University of Chicago Press (1964).
  
- Mc
-  
    P. J. Mckenna, On solutions of a nonlinear wave equation 
    when the ratio of the period to the length of the interval is irrational, 
    Proc. of AMS, Vol. 93, No.1 (1985), 59-64.
  
- R1
- 
    P. H. Rabinowitz, Periodic solutions of nonlinear hyperbolic 
    partial diffrential equations, Comm. Pure Appl. Math. Vol. 20 (1967), 
    145-205.
  
- R2
- 
    P. H. Rabinowitz, Free vibrations for a semilinear wave equations, 
    Comm. Pure Appl. Math. Vol. 31 (1978), 31-68. 
  
- W
- 
    C.E. Wayne, Periodic and quasiperiodic solutions of nonlinear wave 
    equations via KAM theory, Comm. Math. Phys. Vol. 127 (1990), 479-528.
  
- Ya1
- 
    M. Yamaguchi, Quasiperiodic motions of vibrating string with 
    periodically moving boundaries, J. Differential Equations, Vol. 135, 
    No.1 (1997), 1-15.  
  
- Ya2
- 
    M. Yamaguchi, Periodic motions of vibrating string with 
    a periodically moving boundary, Discrete and Continuous Dynamical 
    Systems, Proceedings of International Conference on Dynamical Systems 
    and Differetial Equations, Vol.2, South Missouri State University, 
    (1998), 303-314.
  
- Ya3
- 
    M. Yamaguchi, Quasiperiodic behavior of vibrating string 
    with the Lissajous boundary condition, Functional Analysis and Global 
    Analysis, Proceedings of International Conference on Functional Analysis 
    and Global Analysis (Springer), (1997), 278-287. 
  
- Ya4
- 
    M. Yamaguchi, Vibrating string problem with quasiperiodically moving 
    boundaries, preprint.    
  
- Ya5
- 
    M. Yamaguchi, Existence of periodic solutions of second order
    nonlinear evolution equations and applications, Funkcialaj Ekvacioj, 
    Vol. 38, No.3 (1995), 519-538.  
  
- Ya6
- 
    M. Yamaguchi, 3D wave equations in sphere-symmetric 
    domain with periodically oscillating boundaries, Discrete and 
    Continuous Dynamical Systems, Vol. 7, no. 2 (2001), 385-396. 
  
- Ya7
- 
    M. Yamaguchi, Existence and stability of global bounded classical 
    solutions of initial boundary value problem for semilinear wave equations, 
    Funkcialaj Ekvacioj, Vol. 23 (1980), 289-308. 
  
- Ya8
- 
    M. Yamaguchi, Nonexistence of bounded solutions of one dimensional 
    wave equations with quasiperiodic forcing terms, J. Differential Equations, 
    Vol. 127, No.2 (1996), 484-497.
  
- Ya-Yo
-   M. Yamaguchi and H. Yoshida, Nonhomogeneous string problem with 
    periodically moving boundaries, 
    Fields Institute Communications, Vol. 25 (2000), 565-574.  
   
- Yoc
- 
    J.-C. Yoccoz, Conjugaison différentiable 
    des difféomorphismes du cercle dont le nomble de rotation vérifie 
    une condition Diophantienne, Ann. Sci. Ecole Normale Sup., 
    Vol. 17 (1984), 333-359.
Masaru Yamaguchi,
Department of Mathematics, Faculty of Science, Tokai University, 
Kanagawa 259-1292, Japan.
E-mail: yamaguchi@sm.u-tokai.ac.jp
Nobuki Takayama
2003-01-30