next up previous
Next: About this document ... Up: Existence of global solutions Previous: Introduction

Bibliography

1
A.Arosio and S.Garavaldi,On the mildly degenerate Kirchhoff string, Math. Methods Appl. Sci.,14(1991), 177-195.

2
I.Lasiecka and J. Ong, Global solvability and uniform decays of solutions to quasilinear equation with nonlinear boundary dissipation , Comm. Partial Diff. Eqs 24(1999), 2069-2107.

3
T.Matsuyama and R. Ikehata, On global solutions and energy decay for the wave equations of Kirchhoff type with nonlinear damping, J. Math.Anal. Appl.204(1996), 729-753.

4
T. Mizumachi, Time decay of solutions for degenerate Kirchoff equation, Nonlinear Analysis 33(1998), 235-252.

5
K. Mochizuki,Global existence and energy decay of small solutions to the Kirchhoff equation with linear dissipation localized near infinity, J. Math. Kyoto Univ.39(1999),347-363.

6
K. Nishihara and Y.Yamada,On global solutions of some degenerate quasilinear hyperbolic equations with dissipative terms, Funk. Ekvac 33(1990),151-159.

7
K. Ono,Global existence and decay properties of solutions for some mildly degenerate nonlinear dissipative Kirchhoff strings, Funk. Ekvac.40(1997), 255-270.

8
K. Ono,On global solutions and blow up solutions of nonlinear Kirchhoff strings with nonlinear dissipations, J. Math. Anal. Appl. 216(1997), 321-347.

9
Y.Yamada,On some quasilinear wave equations with dissipative terms, Nagoya Math. J. 187(1982), 17-39.

10
T.Yamazaki,Scattering for a quasilinear hyperbolic equation of Kirchhoff type, J. Differential Equations 143(1998), 1-59.

Mitsuhiro Nakao, Graduate School of Mathematics, Kyushu University, Fukuoka, 810-8560, Japan , E-mail: mnakao@math.kyushu-u.ac.jp

Jeong Ja Bae, Department of Mathematics, Pusan National University, Pusan 609-735 Korea ,E-mail: jjbae@hyowon.pusan.ac.kr



Nobuki Takayama 2003-01-30