next up previous
Next: Bibliography Up: Notes on Space-Time Decay Previous: Notes on Space-Time Decay

Introduction and results




Consider the nonstationary Navier-Stokes system in ${\mbox{\mb R}}^n$, $n\geq 2$, in the form of the integral equation:

\begin{displaymath}
u(t)=e^{-tA}a-\int_0^te^{-(t-s)A}P\nabla\cdot(u\otimes u)(s)ds.
\leqno {\rm (IE)}
\end{displaymath}

Here $\{e^{-tA}\}_{t\geq 0}$ is the heat semigroup, $P$ is the bounded projetion from the space ${\mbox{\boldmath$L$}}^q$, $1<q<\infty$, of vector fields to the subspace of ${\mbox{\boldmath$L$}}^q$ consisting of all divergence-free vector fields. As is shown in [4], the operator $e^{-tA}P\nabla\cdot$ has the kernel function $F=(F_{\ell,jk})_{j,k,\ell=1}^n$ with

\begin{displaymath}
F_{\ell,jk}(x,t)=\partial _{\ell}E_t(x)\delta_{jk}
+\int_0^{...
...{\ell}E_{s+t}(x)ds,
\qquad \partial _j=\partial /\partial x_j,
\end{displaymath}

where $x=(x_1,\ldots,x_n)\in{\mbox{\mb R}}^n$, $t>0$, and $E_t(x)=(4\pi t)^{-\frac{n}{2}}e^{-\vert x\vert^2/4t}$.

Inspired by Takahashi [9], we proved in [4] the following




Theorem 1. Fix $1\leq\gamma\leq n+1$ and let $a$ be divergence-free, satisfying

\begin{displaymath}
\vert(e^{-tA}a)(x)\vert\leq c(1+\vert x\vert)^{-\gamma},\qqu...
...e^{-tA}a)(x)\vert\leq c(1+t)^{-\frac{\gamma}{2}}.
\leqno (1.1)
\end{displaymath}

If $c>0$ is small, then (IE) possesses a solution $u$ such that, with another $c>0$,

\begin{displaymath}
\vert u(x,t)\vert\leq c(1+\vert x\vert)^{-\gamma},\qquad
\vert u(x,t)\vert\leq c(1+t)^{-\frac{\gamma}{2}}.
\end{displaymath}

However, in proving Theorem 1, the Hardy space theory was used to find relevant decay estimates in $t$. In this paper we show that Theorem 1 can be deduced by a more elementary method, i.e., without using the Hardy space theory.

In [4] we also gave a class of initial data $a$ for which $e^{-tA}a$ satisfies (1.1). But, the assumption on $a$ imposed in [4] was too complicated and restrictive. So, we here give a simpler version of the assumption on $a$ that ensures the validity of (1.1). More specifically, we shall show the following




Theorem 2. Let $a$ be divergence-free and satisfy

\begin{displaymath}
c_0=\sup_y(1+\vert y\vert)^{\gamma}\vert a(y)\vert<\infty\qquad\mbox{for some $0<\gamma\leq n+1$}.
\end{displaymath}

Suppose further that

\begin{displaymath}
c_1=\int\vert a(y)\vert dy<\infty\quad\mbox{when $\gamma=n$}...
... y\vert\vert a(y)\vert dy<\infty\quad\mbox{when $\gamma=n+1$}.
\end{displaymath}

Then

\begin{displaymath}
\vert(e^{-tA}a)(x)\vert\leq cd(1+\vert x\vert)^{-\gamma},\qq...
...^{-tA}a)(x)\vert\leq cd(1+t)^{-\frac{\gamma}{2}}.
\leqno (1.2)
\end{displaymath}

Here, $d=c_0+c_1$ when $\gamma=n$ or $\gamma=n+1$; and $d=c_0$ otherwise.




Starting from Theorems 1 and 2, we deduced in [3] a space-time asymptotic expansion of solutions $u$ in the case $\gamma=n+1$, which was then applied in [8] to find a lower bound estimate of rates of energy decay for weak solutions of (IE).

Finally, we supplement the recent result of Brandolese [2] on the existence of solutions which decay more rapidly than those treated in Theorem 1. Consider the divergence-free vector fields $a$ such that

$(a)$ $a_j$ is odd in $x_j$ and is even in each of the other variables.
$(b)$ $a$ is cyclically symmetric in the sense that

\begin{displaymath}
a_1(x_1,\ldots,x_n)=a_2(x_n,x_1,\ldots,x_{n-1})=\cdots=a_n(x_2,\ldots,x_n,x_1).
\end{displaymath}

Brandolese [2] shows the existence of a solution $u$ satisfying $(a)$ and $(b)$ above, with the estimates

\begin{displaymath}
\vert u(x,t)\vert\leq c(1+\vert x\vert)^{-n-2},\qquad
\vert u(x,t)\vert\leq c(1+t)^{-\frac{n+2}{2}}.
\leqno (1.3)
\end{displaymath}

Observe that the solutions above decay more rapidly than those treated in Theorem 1. But, estimate (1.3) seems not optimal. Indeed, we shall prove




Theorem 3. Suppose $a$ satisfies $(a)$ and $(b)$, and

\begin{displaymath}
c_0=\sup(1+\vert y\vert)^{n+3}\vert a(y)\vert<\infty,\qquad
c_1=\int\vert y\vert^3\vert a(y)\vert dy<\infty.
\leqno (1.4)
\end{displaymath}

(i) The function $x\mapsto e^{-tA}a(x)$ satisfies $(a)$ and $(b)$, and there hold the estimates

\begin{displaymath}
\vert(e^{-tA}a)(x)\vert\leq c(c_0+c_1)(1+\vert x\vert)^{-n-3...
...
\vert(e^{-tA}a)(x)\vert\leq c(c_0+c_1)(1+t)^{-\frac{n+3}{2}}.
\end{displaymath}



(ii) If $c_0+c_1$ is small, then (IE) has a strong solution $u$ satisfying $(a)$, $(b)$, and

\begin{displaymath}
\vert u(x,t)\vert\leq c(1+\vert x\vert)^{-n-3},\qquad\vert u(x,t)\vert\leq c(1+t)^{-\frac{n+3}{2}}.
\leqno (1.5)
\end{displaymath}




Brandolese [2] proves the existence of solutions which satisfy (1.3), assuming

\begin{displaymath}
c'_0=\sup(1+\vert y\vert)^{n+2}\vert a(y)\vert<\infty,\qquad
c'_1=\int\vert y\vert^2\vert a(y)\vert dy<\infty.
\leqno (1.6)
\end{displaymath}

This is the reason why (1.3) is deduced in [2] instead of (1.5). However, the result of [3] implies that the corresponding solution $u$ has to satisfy

\begin{displaymath}
\Vert u(t)\Vert _{\infty}=o(t^{-\frac{n+2}{2}})\qquad\mbox{as $t\to\infty$}
\end{displaymath}

whenever $a$ satisfies $(a)$, $(b)$ and (1.6). Thus, (1.3) is not optimal even under the assumption (1.6). On the other hand, in view of the result given in [7], estimate (1.5) seems to be optimal for general solutions satisfying $(a)$ and $(b)$. Namely, one can reasonably expect the existence of a solution $u$ satisfying $(a)$ and $(b)$ such that

\begin{displaymath}
\Vert u(t)\Vert _{\infty}\geq ct^{-\frac{n+3}{2}}\qquad
\mbox{for large\ \ $t>0$},
\end{displaymath}

even when $a$ is in $\mathcal{S}$ and satisfies $(a)$, $(b)$ and $\int y^{\alpha}a(y)dy=0$ for every multi-index $\alpha$.







next up previous
Next: Bibliography Up: Notes on Space-Time Decay Previous: Notes on Space-Time Decay
Nobuki Takayama 2002-09-18