next up previous
Next: About this document ... Up: Small Data Global Existence Previous: Introduction

Bibliography

1
W. Dan and Y. Shibata.
On a local energy decay of solutions of a dissipative wave equation.
Funkcial. Ekvac. 38(1995), 545-568.

2
R. Ikehata.
Energy decay of solutions for the semilinear dissipative wave equations in an exterior domain.
Funkcial. Ekvac. 44 (2001), 487-499.

3
R. Ikehata and T. Matsuyama.
Remarks on the behaviour of solutions to the linear wave equations in unbounded domains.
Proc. Fac. Sci. Tokai Univ. 36 (2001), 1-13.

4
R. Ikehata, Y. Miyaoka and T. Nakatake.
Decay estimates of solutions for dissipative wave equations in ${\bf R}^{N}$ with lower power nonlinearities.
submitted (2001).

5
R. Ikehata and M. Ohta.
Critical exponents for semilinear dissipative wave equations in ${\bf R}^{N}$.
J. Math. Anal. Appl. (to appear).

6
S. Kawashima, M. Nakao and K. Ono.
On the decay property of solutions to the Cauchy problem of the semilinear wave equation with a dissipative term.
J. Math. Soc. Japan 47(1995), 617-653.

7
T. T. Li and Y. Zhou.
Breakdown of solutions to $\mbox{\fbox{\quad }} u + u_{t} = \vert u\vert^{1+\alpha}$.
Discrete Contin. Dynam. Systems 1 (1995), 503-520.

8
A. Matsumura.
On the asymptotic behavior of solutions of semi-linear wave equations.
Publ. RIMS, Kyoto Univ. 12 (1976), 169-189.

9
M. Nakao.
Existence of global decaying solutions in exterior domains for the semilinear wave equations with some localized dissipations.
Math. Z. (to appear).

10
M. Nakao and K. Ono.
Existence of global solutions to the Cauchy problem for the semilinear dissipative wave equations.
Math. Z. 214(1993), 325-342.

11
A. Saeki and R. Ikehata.
Remarks on the decay rate for the energy of the dissipative linear wave equations in exterior domains.
SUT J. Math. 36 (2000), 267-277.

12
G. Todorova and Y. Yordanov.
Critical exponent for a nonlinear wave equation with damping.
J. Diff. Eqns 174 (2001), 464-489.



Nobuki Takayama 2002-09-18