Next: About this document ...
Up: Bäcklund Transformations and the
Previous: Introduction
- 1
- Hukuhara, M., I. Meromorfeco de la solvo de (F) ,
II. Diferenciala sistemo de Schlesinger, III. Ekvivalenteco de la
diferenciala sistemo de Schlesinger kaj tiu de Garnier, IV. La ekvacio
(VI) de Painlevé-Gambier, unpublished lecture note.
- 2
- Iwasaki, K., Kimura, H., Shimomura, S. and Yoshida, M., From
Gauss to Painlevé, Vieweg, 1991.
- 3
- Kac, V.G., Infinite dimensional Lie algebras, 3rd edition,
Cambridge Univ. Press, 1990.
- 4
- Matano, T., Matumiya, A. and Takano, K., On some Hamiltonian
structures of Painlevé systems II, J. Math. Soc. Japan, 51(1999),
843-766.
- 5
- Matumiya, A., On some Hamiltonian structures of Painlevé systems
III, Kumamoto J. Math., 10(1997), 45-73.
- 6
- Noumi, M., Painlevé equations, Asakura Shoten, Tokyo, 2000
(in Japanese).
- 7
- Noumi, M. and Yamada, Y., Affine Weyl groups, discrete dynamical
systems and Painlevé equations, Commun. Math. Phys., 199(1998),
281-295.
- 8
- Noumi, M. and Yamada, Y., Symmetries in the fourth Painlevé
equation and Okamoto polynomials, Nagoya Math. J., 153(1999), 53-86.
- 9
- Noumi, M. and Yamada, Y., Affine Weyl group symmetries in Painlevé
type equations, in Toward the exact WKB analysis of differential
equations, linear or non-linear (Eds. C.J. Howl, T. Kawai, Y. Takei),
245-259, Kyoto Univ. Press, Kyoto, 2000.
- 10
- Okamoto, K., Sur les feuilletages associés aux équations du
second ordre à points critiques fixes de P. Painlevé, Japan. J. Math.,
5(1979), 1-79.
- 11
- Okamoto, K., Studies on the Painlevé equations, I, Ann. Mat. Pura
Appl., 146(1987), 337-381; II, Jap. J. Math., 13(1987), 47-76;
III, Math. Ann., 275(1986), 221-256; IV, Funkcial. Ekvac., 30
(1987), 305-332.
- 12
- Painalvé, P., Mémoire sur les équations différentielles
dont l'integrale generale est uniforme, Bull. Soc. Math. France,
28(1900), 206-261.
- 13
- Painlevé, P., Sur les équations différentielles du second
ordre à points critiques fixes, C. R. Acad. Sci. Paris, 143(1906),
1111-1117.
- 14
- Shioda, T. and Takano, K., On some Hamiltonian structures of
Painlevé systems I, Funkcial. Ekvac., 40(1997), 271-291.
- 15
- Takano, K., Defining manifolds for Painlevé equations, in Toward the exact WKB analysis of differential equations, linear and
nonlinear (Eds. C.J. Howls, T. Kawai and Y. Takei), 261-269, Kyoto
Univ. Press, Kyoto, 2000.
- 16
- Watanabe, H., Defining variety and birational canonical transformations
of the fifth Painlevé equation, Analysis(Munich), 18(1998),
351-357.
- 17
- Watanabe, H., Defining variety and birational canonical transformations
of the fourth Painlevé equation, Funkcial. Ekvac., 42(1999), 1-7.
- 18
- Okamoto, K. and Takano,K., The proof of the Painlevé property
by Masuo Hukuhara, Funkcial. Ekvac., 44(2001), 201-217.
Nobuki Takayama
2002-09-18