Next: About this document ...
Up: Collapsible Backward Continuation and
Previous: Introduction.
- 1
- Burkill, J. and Burkill, H., A Second Course in
Mathematical Analysis, Cambridge Univ. Press, p. 53 (1970).
- 2
- CARVALHO, L.A.V. and COOKE, K.L. Collapsible Backward Continuation and Numerical Approximations in a Functional Differential Equation, J.Differential Equations, V. 143 (1998), no. 1, 96-109.
- 3
- FELDSTEIN, A. and GRAFTON, C. Experimental mathematics: an application to retarded ordinary differential equations with infinite time lag, Proc. of the ACM National Conference, pp. 67-71 (1968).
- 4
- FELDSTEIN, A. and ISERLES, A. Embedding of Delay Equations into an Infinite-Dimensional ODE System, Journal of Differential Equations, V.117, No.1, pp.127-150 (1995).
- 5
- FOX, L., MAYERS, D.F., OCKENDON, J.R. and TAYLOR, A.B. On a Functional Differential Equation, J. Inst. Math. Appl., V.8, pp. 271-307 (1971).
- 6
- HALE, J.K. Theory of Functional Differential Equations,
Springer-Verlag-Applied Math. Sciences, vol.3 (1977).
- 7
- HÖNIG, C.S. Aplicações da Topologia à Análise (in Portuguese), Projeto Euclides, IMPA, Rio de Janeiro.
- 8
- INCE, E.L. Ordinary Differential Equations, Dover Publications, New York (ND).
- 9
- ISERLES, A. On the generalized pantograph functional-differential equation, Euro. Jnl. of Applied Mathematics, Cambridge University Press, V. 4, pp.1-38, (1993).
- 10
- KATO, T. and McLEOD, J.B. The Functional Differential Equation
, Bull. Amer. Math. Soc. V.77 pp. 891-937 (1971).
- 11
- LEIGHTON, W. Ordinary Differential Equations, Wadsworth Publishing Co., Belmont, Ca. (1970).
- 12
- LIMA, E.L. Variedades Diferenciáveis (in Portuguese), IMPA, Rio de Janeiro (1973).
- 13
- LIU, Y.-K. The Linear q-Difference Equation
, Appl. Math. Lett., V. 8, No.1, pp.15-18 (1995).
- 14
- MAKAY, G. and TERJÉKI, J. On the asymptotic behavior of the pantograph equations(Preprint) Bolyai Institute, Szeged, Hungary (1996).
- 15
- MORRIS, G.L., FELDSTEIN, A. and BOWEN, E.M.The Phragmén-Lindelöf Principle and a Class of Functional Differential Equations, in Ordinary Differential Equations, edited by Leonard Weiss, Academic Press, New York and London, pp.513-540 (1972).
Nuna Adreso
L.A.V. Carvalho
Departamento de Matemática, Universidade Estadual de
Maringá
Maringá,
PR, CEP 87020-900, Brazil
K.L.Cooke
Department of Mathematics, Pomona College, Claremont, CA 91711,
USA
L.A.C. Ladeira
Departamento de Matemática, ICMSC-USP
São Carlos,
SP, CEP 13560-970, Brazil
E-mail: ladeira@icmc.sc.usp.br
Nobuki Takayama
2002-04-24