next up previous
Next: hpq-0208 Up: Digital Formula Book for Previous: hpq-0206


hpq-0207

Edited by Hiromasa Nakayama

$  {}_2F_1(a,b,c,(- 1 ))=(\frac{(\Gamma(c)\cdot \Gamma((\frac{b}{ 2 }+\frac{c}{...
...rac{((( 1 +b)+c)-a)}{ 2 }),{\tt List}(((b+c)-a),\frac{(( 1 +b)+c)}{ 2 }), 1 )) $
Typeset by om2tex.xsl

$ {}_2 F_1 (a,b,c,-1) = {\frac{\Gamma ({\frac{b}{2}} + {\frac{c}{2}}) \Gamma (c...
...}},-a + b + c\} ,1)}{\Gamma ({\frac{-b}{2}} + {\frac{c}{2}}) \Gamma (b + c)}} $
Typeset by Mathematica

Formula in the tfb format:

   hypergeo1.hypergeometric2F1(a, b, c, arith1.unary_minus(1))
   =
   ((hypergeo0.gamma(c) * hypergeo0.gamma(b / 2 + (c / 2))) /
     (hypergeo0.gamma(c / 2 - (b / 2)) * hypergeo0.gamma(b + c)) * 
    hypergeo1.hypergeometric_pFq(
     list1.list(b, (b + c - a) / 2, (1 + b + c - a) / 2),
     list1.list(b + c - a, (1 + b + c) / 2),
     1));

Transformation of a nearly-poised series 3 F 2(-1)

Reference: Retrieve the formula in Mathematica form hpq-0207-math-auto.m Retrieve the formula in Risa/Asir form hpq-0207-asir-auto.rr Retrieve the formula in LaTeX form hpq-0207-tex-auto.tex Interactive replacement hpq-0207-js-auto.html


Nobuki Takayama 2003-02-03